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Covariances in our life

Covariance matrix

● Don't know how to compute it accurately/efficiently;

● By far, the least well understood piece of this likelihood: what is its 
redshift and cosmological dependence; baryonic effects?

We'll address this!

Theoretical predictionMeasured data 

● The Gaussian likelihood of a certain set of parameters given a hypothetical 
survey measurement of the 3D matter power spectrum P(k):



  

In this talk … 

1) Response Approach to Perturbation Theory

2) An application to the lensing covariance

Barreira, Schmidt , 1703.09212

Barreira, Schmidt , 1705.01092 

Barreira, Krause, Schmidt, 1711.07467



  

Response Approach to PT

Barreira, Schmidt , 1703.09212



  

Responses describe how the power spectrum responds to the presence 
of large-scale perturbations.

What are responses?

Observed patch
Density or tidal field 
perturbation



  

Responses describe how the power spectrum responds to the presence 
of large-scale perturbations.

What are responses?

Observed patch
Density or tidal field 
perturbation

What are they good for?
To describe squeezed N-point functions

How do we evaluate them?
With separate universe simulations



  

Responses and N-point functions
Power spectrum, Bispectrum, Trispectrum … 
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Responses and N-point functions
Power spectrum, Bispectrum, Trispectrum … 

Small scale (hard) modes

Large scale (soft) modes

Modulation of the power spectrum P(k) by large-scale modes

i.e. Responses!

hard soft Response

N+2 squeezed correlations described by the N-th response



  

Squeezed bispectrum example

hard soft
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Result is valid only if all 
modes are linear 

With Standard Perturbation Theory
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Squeezed bispectrum example

hard soft

With responses

Result is valid for linear p, 
but any nonlinear k, k' !

Result is valid only if all 
modes are linear 

With Standard Perturbation Theory

Responses as an extension of perturbation theory … 

= +

Analytical, but insufficient. Accessible with 
simulations

Responses are a 
resummed interaction



  

Response decomposition

Write the response in terms of all possible local gravitational observables
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Response decomposition

Write the response in terms of all possible local gravitational observables

All possible configurations of 
large-scale density/tidal fields;

Given by perturbation theory.

Measure the response to each 
specific large-scale configuration;

What we will get from simulations.



  

Response decomposition

Large-scale overdensity Large-scale tidal field

Response to overdensity Response to tidal field



  

Response decomposition

Response coefficients

All 2nd order large-scale operators

Generalizations to any order are always 
straightforward, just more cumbersome.



  

Separate universe simulations

All possible configurations of 
large-scale density/tidal fields;

Response to specific 
perturbations

Nitty-gritty: Li et al (1401.0385) ; Wagner et al (1409.6294); Schmidt et al (1803.03274);



  

All possible configurations of 
large-scale density/tidal fields;

Response to specific 
perturbations

1) Induce these 
in simulations

2) Compare to “mean” 
spectrum to measure 

responses

Separate universe simulations
Nitty-gritty: Li et al (1401.0385) ; Wagner et al (1409.6294); Schmidt et al (1803.03274);



  

Separate universe simulations

Response to overdensity Response to tidal field
Li et al (1401.0385) ; Wagner et al (1409.6294) Schmidt et al (1803.03274)



  

To keep in mind then … 

hard soft response

Responses describe the coupling of large-to-small 
scale modes in the nonlinear regime

Measurable with a few Separate Universe simulations.



  

Covariances with Responses

Barreira, Schmidt, arXiv:1705.01092
Barreira, Krause, Schmidt, arXiv:1711.07467



  

3D covariance decomposition

W(x): window function

● Observed, 'windowed' density field

● The power spectrum
Takada&Hu (1302.6994)



  

3D covariance decomposition

W(x): window function

+ +
Gaussian Connected 

non-Gaussian
Super-sample

● The power spectrum covariance

● Observed, 'windowed' density field

● The power spectrum
Takada&Hu (1302.6994)



  

The Gaussian term : G

Trivially given by P(k) Diagonal

● It is the only contribution during the linear regime of structure formation



  

The Gaussian term : G

The Gaussian term 
is well understood !

Trivially given by P(k) Diagonal

Window function can be included 
by using the convolved P(k) .

● It is the only contribution during the linear regime of structure formation



  

The Gaussian term : G

The Gaussian term 
is well understood !

Trivially given by P(k) Diagonal

Window function can be included 
by using the convolved P(k) .

● It is the only contribution during the linear regime of structure formation
Corresponding 

lensing formulae

● Windowed lensing convergence

● Lensing power spectrum

● Gaussian lensing covariance

Assuming Limber's approx., 
which is okay for l > 20



  

Connected non-Gaussian term : cNG
● Describes the coupling of different Fourier modes due to 

nonlinear structure formation .
Parallelogram 
trispectrum



  

Connected non-Gaussian term : cNG
● Describes the coupling of different Fourier modes due to 

nonlinear structure formation .

● Extend to the nonlinear regime with responses if k1 >> k2:

Valid for any nonlinear value of k1 !

hard soft

response

Parallelogram 
trispectrum



  

cNG : response vs simulations

non-Gaussian 
covariance matrix

tree and partial 1-loop



  

cNG : response vs simulations

`

k2 = 0.06 h/Mpc

Black : Blot + (2015); over 12000 sims.
Red    : response

non-Gaussian 
covariance matrix

tree and partial 1-loop

If one mode is linear :  
responses capture all there is
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cNG : response vs simulations

`

k2 = 1 h/Mpc

k2 = 0.06 h/Mpc

Black : Blot + (2015); over 12000 sims.
Red    : response

Up to 70%, but can 
be improved.

Numerical estimation 
gets it wrong here.

non-Gaussian 
covariance matrix

tree and partial 1-loop

If one mode is linear :  
responses capture all there is

Compared to pure numerical estimates, response approach:

1) Requires negligible numerical resources

2) Is virtually noise-free.



  

cNG : response vs simulations

`

k2 = 1 h/Mpc

k2 = 0.06 h/Mpc

Black : Blot + (2015); over 12000 sims.
Red    : response

Up to 70%, but can 
be improved.

Numerical estimation 
gets it wrong here.

non-Gaussian 
covariance matrix

tree and partial 1-loop

If one mode is linear :  
responses capture all there is

Corresponding 
lensing formulae Assuming Limber's approx., 

which is okay for l > 20

Convolution with the mask is not 
easy, but its impact is subdominant !

e.g. Takahashi et al (1405.2666)

● Connected non-Gaussian lensing covariance



  

The super-sample term : SSC
● Describes the coupling of modes inside the survey 

with unobserved modes outside the survey.

● Given by trispectrum terms that get excited by 
finiteness of the window function
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The super-sample term : SSC
● Describes the coupling of modes inside the survey 

with unobserved modes outside the survey.

Super-sample interactions are response interactions

Responses capture SSC completely !

● Given by trispectrum terms that get excited by 
finiteness of the window function

Corresponding 
lensing formulae

Warning:
Validity of Limber's approximation 

at stake because of the long-mode !



  

SSC beyond flat-sky/Limber's approx
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Account for long modes with responses



  

SSC beyond flat-sky/Limber's approx

Account for long modes with responses

● Never assuming Limber for the long-mode;

Power spectrum of mask 
on the curved sky

Variance-like integral that 
accounts for 3D long-mode.



  

SSC beyond flat-sky/Limber's approx

Account for long modes with responses

● Never assuming Limber for the long-mode;

Power spectrum of mask 
on the curved sky

Variance-like integral that 
accounts for 3D long-mode.

Limber's approximation underestimates SSC 
matrix elements by ~10% for f_sky ~ 0.3-0.4 !

Don't forget responses to tidal fields, if 
you want SSC entries to better than 5% !



  

Lensing covariance summary



  

Lensing covariance summary

Solved ! Solved ! 



  

Lensing covariance summary

Solved ! Solved ! 

Responses capture most of it , 
but do we really need it ?



  

Forecast covariance requirements
Euclid-like lensing setup

w/ CosmoLike , Krause&Eifler (1601.05779)

G

Preliminary

● 3 tomographic bins
● 20 ell bins in [20, 5000]
● Mask: spherical cap 15000 deg^2
● Source density: 30 / arcmin^2
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Forecast covariance requirements
Euclid-like lensing setup

● 3 tomographic bins
● 20 ell bins in [20, 5000]
● Mask: spherical cap 15000 deg^2
● Source density: 30 / arcmin^2

w/ CosmoLike , Krause&Eifler (1601.05779)

G + SSC + cNG
G + SSC

G + cNG
GRelative to G, cNG increases 

error by 34% .

Relative to G+SSC, cNG 
increases error by only 5% .

Preliminary

In the presence of the dominant off-diagonal SSC 
term, cNG becomes irrelevant ...

… including systematics will only strengthen this 
conclusion !



  

Responses on Sample Covariance

Accurate covariances with 
modest numerical resources !

`

Off-diagonal covariance is 
dominated by responses .



  

Responses on Sample Covariance

Accurate covariances with 
modest numerical resources !

`

Can't we then live with 

analytical sample covariances ?

● Implementation of lensing covariance exists (stay tuned);

● Applications to galaxy and cross covariance are possible;

● Applications are not limited to power spectra covariances.

Off-diagonal covariance is 
dominated by responses .
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