Cluster Mislocation in kinematic Sunyaev-Zel'dovich (kSZ) effect extraction

Victoria CalafutCornell UniversityApril 20, 2018SCLSS, Oxford

kSZ pairwise momentum

- Secondary anisotropies in CMB due to hot gas at galaxy cluster center
 - Doppler shift of photons from electrons due to their bulk peculiar motion
- Measuring cluster peculiar motions with the kSZ effect can constrain cosmology
- Find *pairwise momentum* between galaxy clusters
 - Pairwise: clusters are individually equally likely to be moving towards or away
 - Momenta: proportional to velocity & electron number density

$$\frac{\delta T_{kSZ}}{T_0}(\hat{r}) = -\int dl \,\sigma_T \, n_e \frac{\mathbf{v} \cdot \hat{\mathbf{r}}}{c} \qquad \frac{\delta T_{kSZ}}{T_0}(\hat{r}) = -\tau \frac{v_r}{c}$$

Image: Sudeep Das, University of California-Berkeley

Testing the Central Galaxy Paradigm

- The brightest halo galaxies (BHG) have been used as proxies to locate the centers of galaxy clusters
- redMaPPer studies: ~20% to ~40% of the BHGs off-centered, considering ranked centering and cluster membership probabilities
- Use aperture photometry to extract the kSZ temperature from the CMB at the location of the brightest galaxy LSS proxy

Additional systematics: covariance methods, photo-z error, aperture size

Datasets

We cross-correlate *Planck* CMB maps x LSS samples, where we choose the cluster center proxy based on the:

- Brightest galaxy, for three primarily spectroscopic samples
- RedMaPPer central galaxy, ٠ including photometric redshifts

Brightest	Galaxy	Catalogs:
-----------	--------	-----------

Sample	N_{gal}	\overline{z}	σ_z	$\Theta(ar{z})$
SDSS CGC	262,671	0.13	0.05	8.0'
WISE	24,731	0.27	0.24	4.8'
CMASS+LOWZ	555,307	0.46	0.15	3.2'

redMaPPer-derived Cataloas:

Sample	N_{gal}	\overline{z}	σ_z	$\Theta(ar{z})$
SDSS $(5 < \lambda < 20)$	$22,\!492$	0.25	0.05	4.7'
SDSS $(\lambda > 20)$	$5,\!818$	0.26	0.05	4.6'
DECaLs	$5,\!870$	0.47	0.13	3.1'

LRG transverse miscentering: redMaPPer

We compare the pairwise signal using the redMaPPer-selected most likely central galaxy vs. the brightest galaxy

LRG transverse miscentering: Gaussian offset modelling

We find the pairwise signal based on 50 trials, in which a different random 25% of the galaxy proxy positions are offset based on a Gaussian distribution of width $\theta_I = 0.3, 0.5$ Mpc/h (Johnston et al)

Current work

- Expanding miscentering analysis for ACT+ACTPol data
- kSZ forecasting for cosmological constraints
 - Adapting pairwise kSZ forecasts (E.-M. Mueller et al. 2014) for next generation CMB and LSS data
 - Implementing LSST: DESC Core Cosmology Library subroutines

Conclusions

- Miscentering increases the kSZ error budget both in redMaPPer and offset modeling analyses, inducing uncertainties comparable to the current statistical errors: $\sim 0.7, 0.6, 0.4\sigma$
- We find JK covariance estimates more conservative than CMB map rotations; do not find a substantial difference based on reasonable aperture selections
- Statistical errors will decrease with new LSS surveys DESI, LSST, Euclid + improved CMB data - CMB-S4, Advanced ACTPol, SPT-4G, Simons Observatory, so mitigating miscentering will become increasingly important

