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How is the cosmic web woven?

	cosmic	web:	voids,	walls,	filaments,	nodes	

gravity

Gaussian	primordial	fluctua*ons	

expansion

Subsequent	 gravita*onal	 evolu*on	 is	 non-
Gaussian:	 need	 to	 go	 beyond	 2-pt	 and	 study	
higher	 order	 sta.s.cs	 e.g	 3-pt	 correla*on	
func*on	(	=	bispectrum)

Ini*al	 state	 fully	 described	 by	 the	 2-pt	
correla*on	func*on	(=	power	spectrum)
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Power	spectrum	
												+	

			bispectrum?																																																						

Which observables to use?
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Power	spectrum	
+	

			bispectrum?																																																						

Issues:	to	enter	into	the	non-linear	regime,	one	probably	needs	to	introduce	plenty	of	free	parameters.	

Is	it	worth	it?	

Can	we	find	other	observables	which	can	be	predicted	from	first	principles	and	can	probe	the	mildly	non-linear	
regime?	

Yes,	there	is	one	such	configura*on:	counts	in	cells,	for	which	the	spherical	symmetry	allows	to	reduce	the	effect	
of	the	small	scales.																																																		

P(⇢1, · · · , ⇢n) =?
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R1 Cosmic density PDF

Can	we	predict	this	non-linear	density	PDF?
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From cumulants to PDF

where	

depends	on	the	shape	of	the	linear	power	spectrum.	

PT	can	predict	the	n-th	order	cumulants	whose	ra*os	

are	almost	z-independent.	In	par*cular,	if	the	density	field	is	
smoothed	with	a	top-hat	filter	
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From cumulants to PDF

The	PDF	of		x=δ/σ	can	then	be	wri_en	as	an	Edgeworth	expansion	(in	powers	of	σ):		

which	can	be	derived	from	the	cumulant	genera*ng	func*on	of	ρ=1+δ	

where																																									.	
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																																																																	Problem	:	When	this	series	is	truncated	at	some																									
																																																																														orders,	the	PDF	is	unphysical	:	it	is	not	normalised		
																																																																														and	can	take	nega*ve	values.																																																																												

																																																																														Solu*on	:	large-devia.on	theory	provides	us	with		
																																																																														a	model	for	the	PDF	which	does	not	suffer	from		
																																																																														those	issues.	All	cumulants	are	exact	at	tree-order.	
																																																																												«An unlikely fluctuation is brought about by 

the least unlikely among all unlikely paths » 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

ρ/ρm

P
(ρ
/ρ
m
)

y



R1

R2
⇢2

⇢1

R1

R2
⇢2

⇢1 R1

R2
⇢2

⇢1

R1

R2
⇢2

⇢1

R1

R2
⇢2

⇢1

ho
riz
on

-A
GN

	

‣ Large	devia*on	principle	
‣ One-point	density	PDF	
‣ Cosmic	PDFs	as	a	cosmological	probe?

Beyond	the	power	spectrum	with	large	devia.ons	theory	



Different	ini*al	configura*ons	can	lead	to	the	same	final	state!	What	is	the	most	likely	one?

Large-deviation Theory: 
what is the most likely initial configuration a final density originates 

from?

Conjecture:	Spherical	symmetry	enforces	this	most	likely	path	to	be	the		Spherical	Collapse	dynamics.

in 3D where J3/2 is the Bessel function of the first kind of index 3/2. The calculation14 of (160)
makes indeed intervene only the second moment and its variation with the smoothing scale so
that Bernardeau (1994a),

h�3
Ric

h�2
Ri2 = 3⌫2 +

d log �
2
R

d log R
(162)

where ⌫2 is directly related to F2 as its angular average,

⌫2 =

Z 1

�1
dµ F2(k1,k2) (163)

(µ is the cos of the angle between k1 and k2). For an Einstein-de Sitter universe we have
3⌫2 = 34/7. Such relation between the spherical collapse dynamics and tree-order cumulant can
actually be generalized to all orders. This is this connexion that we will try to unveil in the
rest of this section. First we need to explore a bit more the specificities of the spherical collapse
solutions.

11.2 The spherical collapse
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Figure 20: Example of evolution of a density profile with the spherical collapse. In blue we
give the linearly evolved profile (linear growing mode)), in red its nonlinear evolution. Given a
density contrast within a radius in the growing mode linear regime ⌧(< r) the subsequent shell
size and density it compasses are entirely determined by the spherical evolution. Example of
such evolutions are given by the blue and red circles.

The spherical collapse does not only give the time within which a spherically symmetric
perturbation collapses, it gives the explicit and exact solution of the nonlinear evolution of the
density field before shell crossing for a wide class of initial fields, those with initial spherical
perturbations. Moreover, the Gauss theorem ensures that the radius evolution of a shell in such
a geometry is entirely determined by the total mass it contains. So let us consider a density
contrast ⌧(< r) within the radius r. Let us call R(⌘) the radius of that same shell during its
nonlinear evolution and ⇢(< R, ⌘) the total density it contains. At an arbitrarily early time
the amount of matter encompassed within such a radius is simply 4⇡/3r

3
⇢(⌘0) and by matter

conservation we have
⇢(< R, ⌘)R3(⌘) = ⇢(⌘0)r3

. (164)

14It is based on the exploitation of summation theorem enjoyed by the Bessel functions, relation 8.530 of
Gradshteyn and Ryzhik (1965).

40

ini*al	
profile

evolved	
profile

⌧ ! ⇢ = ⇣SC(⌧)

r0 ! r = r0⇢
�1/3

In	principle,	one	has	to	sum	over	all	possible	paths:
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LDP	tells	us	how	to	compute	the	cumulant	genera.ng	func.on	from	the	ini*al	condi*ons	using	the	spherical	
collapse	as	the	«	mean	dynamics	»:

'({�k}) = sup(�i⇢i � I(⇢i))
⇢i

Varadhan’s 
theorem

Why?	

Cosmological density profiles from perturbation theory
calculations

20 avril 2013

1 Introduction

It is time to revisit count in cells statistics...

2 The general theory

Let us define a finite number of concentric cells of radius Ri and their densities, ⇢i. They form a priori
a set of correlated random variables. One can define the generating function of their cumulants as

'({�i}) =
1X

pi=0

h⇧i⇢
pi
i ic

⇧i�
pi
i

⇧ipi
. (1)

Such a function is a function of �i. Note that it is by itself an observable as it can be computed from the
joint PDF,

exp ['({�i})] = hexp(�i⇢i)i (2)

from the moment generating function. One expects however such a function to be defined for limited
range of values of �i as such ensemble average are not defined if |�i| is too large. We will see that this
analytical properties will play a crucial role in the following.

This generating function can be computed at tree order in perturbation theory, that is when each of
the coe�cient h⇧i⇢

pi
i ic is computed at leading order assuming Gaussian initial conditions. As recalled in

the introduction, this can be entirely related to the spherical collapse dynamics.
The formal solution of this question is give by,

exp ['({�i})] =
Z

D [⌧(~x)]P [⌧(~x)] exp(�i⇢i [⌧(~x)]) (3)

Let us denote ⇣(⌧i) the nonlinear transform of the density when ⌧i is the linear density profile. This
transform is a priori time dependent but its dependence on time is very small and in the following we
will neglect this dependence. We can define  (⇢i) as

 ({⇢i}) =
1

2

X

ij

⌅ij ⌧i⌧j (4)

where ⇣(⌧i) = ⇢i and ⌅ij is the inverse matrix of the cross-correlation of the density in cells of radius

Ri⇢
1/3
i ,

�2(Ri⇢
1/3
i , Rj⇢

1/3
j ) ⌅jk = �ik. (5)

The coe�cient therefore depend on both the radii Ri and the density ⇢i. The cumulant generating function
is then given by the Legendre transform of  ,

'({�i}) =
X

i

�i⇢i � ({⇢i}) (6)

where ⇢i are determined by the stationarity conditions,

�i =
@ ({⇢i})

@⇢i
. (7)

This is this general expression that we will exploit in the following.

1

⤷ known Gaussian PDF

' �i h⇢ii + �i�j h⇢i⇢ji + . . .

initial density contrast

exp ['({�k})] = M({�k}) =
D
exp(⌃

i
�i⇢i)

E
=

Z 1

0
⇧
i
d⇢iP ({⇢k}) exp

⇣
⌃
i
�i⇢i

⌘

﹛
P(⌧) / e�I(⌧)

=
Z

d⌧i exp (�i⇣SC(⌧i)� I(⌧i))

'(�k)

contraction
principle

Large-deviation Theory: 
in a nutshell
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LDP	tells	us	how	to	compute	the	cumulant	genera.ng	func.on	from	the	ini*al	condi*ons	using	the	spherical	
collapse	as	the	«	mean	dynamics	»:

'({�k}) = sup(�i⇢i � I(⇢i))
⇢i

Varadhan’s 
theorem

The	density	PDF	is	then	obtained	via	an	inverse	Laplace	transform	of	the	CGF

'(�) =
Z

P (⇢) exp(�⇢)$ P (⇢) =
Z ı1

�ı1

d�

2ı⇡
exp(�⇢� '(�))exp

• This	is	exact	in	the	zero	variance	limit.	We	then	extrapolate	to	non	zero	values.	

• Parameter-free	theory	which	depends	on	cosmology	through	:	the	spherical	collapse	dynamics,	the	linear	
power	spectrum	and	growth	of	structure.	

• Predic*ons	are	fully	analy.cal	if	one	applies	the	LDP	to	the	log.	(Uhlemann+16)

Large-deviation Theory: 
in a nutshell

10
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‣ Cosmic	PDFs	as	a	cosmological	probe?

Beyond	the	power	spectrum	with	large	devia.ons	theory	



Horizon-Run	4:	3.1	h-1	Gpc		
R	=	10…15	h-1	Mpc

One-cell density PDF
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We have developed a fast and easy-to-use public code… 
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http://cita.utoronto.ca/~codis/LSSFast.html

SC+16b
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To	get	one-cell	PDF,	one	has	to:

Where is the cosmology dependence?

spherical collapse 
dynamics

1)	know	the	rate	func*on	of	the	ini*al	condi*ons	e.g	(Gaussian):

I(⌧(R0)) = �2(Rp)⇥ 1/2⌧(R0)2/�2(R0)

2)	deduce	the	rate	func*on	of	the	final	densi*es	from	the	Contrac*on	Principle

I(⇢) = I(⌧ = ⇣�1(⇢))

where	the	ini*al	variance	is	a	func*on	of	the	linear	power	spectrum

�2(R) =
1

(2⇡)3

Z
d3kPlin(k)W 2

TH
(kR)

3)	compute	CGF	and	then	PDF

P (⇢|⌫, Plin, �NL(R, z))

modifications
of gravity initial statistics

primordial non-Gaussianities

growth of structure
dark energy

17



The	full	knowledge	of	the	PDF	can	be	used	to	es*mate	the	redshik	evolu*on	of	the	density	
variance	σ	and	therefore	the	DE	e.o.s	through	D(z).

sample varianceσ�A
σ�ML
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-σ
� M

L/
A
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max likelihood

ML estimator for the variance

Maximum	Likelihood	es*mator	:

�̂2
A =

1
N

NX

i=1

(⇢i � 1)2

�̂2
ML = argmax�̃2

NY

i=1

P(⇢i|�̃2)

Sample	variance	:

When	the	PDF	becomes	non-
Gaussian	(high	σ),	the	sample	
variance	is	sub-op*mal	compared	
to	the	ML	es*mator

SC+16b
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15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe

SC+16b

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey

19



15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe

SC+16b

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey

19

Error	budget	for	finite	volume	surveys?



Joint statistics of count-in-cell 5

Figure 2. a) the configuration of 3 + 1 spherical cells in one location (red cells shown in the left-hand panel) can be used to compute
the joint cumulants involving any power of the density in 3 concentric cells in one location (red cells displayed in the b) panel) and
one power of the density in one cell (coloured in brown in the middle panel) at some arbitrary distance re from the rest, as described
in section 3.2. Those cumulants are the building blocks of the two-point PDF of concentric densities in the large-separation limit (see
equation 38). The corresponding configuration with n = 3 concentric cells in one location (red) and m = 3 concentric cells at a distance
re (brown) is displayed in the c) panel.

3.2 The n+1 cell formalism

Let us now consider the formal derivation of the generat-
ing function of joint cumulants for n + 1 cells centred on
the same point when the n + 1th radius, Rn+1 = re, is set
apart (at this stage there is no assumption on the relative
size of these radii). This configuration is illustrated in the
left-hand panel of Fig. 2 and is of particular interest since
we will show in this section how it can be used to predict
some configurations of the two-point statistics without any
assumption on the separation. Later, we will also use it as a
building block of the large-separation approximation of the
two-point correlation function of concentric densities (see
section 4.2). This generating function simply reads

'b({�k};< re) =
1X

pi=0

h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic
⇧i�

pi
i

⇧ipi!
, (24)

where ⇢(re) enters the cumulant h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic only
as a linear power. Equation (24) is the generating function
of the cumulants containing one power of the outer density
and arbitrary powers of the n inner densities. It simply cor-
responds to the first derivative of the cumulant generating
functions for n+ 1 cells taken at the origin

'b({�k};< re) =
@

@�n+1
'(�1, . . . ,�n+1)

���
�n+1=0

. (25)

Taking advantage of the stationary condition (23) applied
to �n+1, we also have

'b({�k};< re) = ⇢n+1(�1, . . . ,�n, 0) , (26)

where ⇢n+1 is in turn computed in terms of the �i from
the set of stationary conditions (20). Finally Equation (26)
can also be re-expressed via equation (17) in terms of the
corresponding linear density contrast as

'b({�k};< re) = ⇣ (⌧(re)) , (27)

where ⌧(re) ⌘ ⌧n+1(�1, · · · ,�n, 0) is to be computed as a
function of {�k} for the specific case where �n+1 is set to 0.
We can then take advantage of decimation (see Appendix A,
equation A14) to write ⌧(re) via the implicit equation:

⌧(re) =
nX

i=1

�
2(re ⇣(⌧(re))

1/3
, Ri ⇣(⌧i)

1/3)⇥

nX

j=1

⌅ij({Rk ⇣(⌧k)
1/3)})⌧j , (28)

where the tensor and vector quantities (⌅ij , ⌧i) are com-
puted when only the first n cells are considered (so that the
set

P
j=1,n ⌃ij⌅jk = �ik together with the stationary con-

ditions form a set of n coupled equations only). Technically,
equation (28) can be solved given the values of {⌧k}k=1,···n
which in turn can be expressed in terms of the variables
{�k}k=1,···n.

Now note that equations (27) and (28) can be used to
get the cumulant generating functions for any quantities lin-
early related to the density. In particular, the density in
an infinitesimal shell at a distance re reads ⇢(re < r <

re + dre) = d⇢(re)r
3
e/dr

3
e so the corresponding cumulant

generating function, 'b({�k}; re), can be written as

'b({�k}; re) =
1
r2e

d
dre

✓
r
3
e

3
'b({�k};< re)

◆
. (29)

Thanks to rotational invariance, the value of the cumulant
within an infinitesimal shell at a distance re is the same as if
the density was computed at a distance re in any direction.
Therefore, equation (29) also describes the cumulant gener-
ating function of concentric densities in spheres of radii Ri

(1 6 i 6 n) and density at some given distance re.
Finally note that the domain for ⇢e does not need to

be a spherical cell and equation (29) can subsequently be

© 0000 RAS, MNRAS 000, 000–000

� 1

Maximum	 likelihood	 requires	 proper	 handling	 of	 correla.ons	 between	
spheres	at	finite	separa*ons.	
The	 large-devia*on	 principle	 provides	 a	 framework	 to	 compute	 the	
expected	two-point	correla*ons	in	the	(not	so)	large	separa*on	limit

Error budget? 

dark matter correlation

where	the	large-devia*ons	bias	is

P (⇢(x), ⇢0(x + re)) = P (⇢)P (⇢0)[1 + ⇠(re)b(⇢)b(⇢0)]

density bias

b(⇢) =
⇣�1
SC (⇢)

�2(R⇢1/3)

spherical collapse

encodes Plin(k)

SC+16a

20



Joint statistics of count-in-cell 5

Figure 2. a) the configuration of 3 + 1 spherical cells in one location (red cells shown in the left-hand panel) can be used to compute
the joint cumulants involving any power of the density in 3 concentric cells in one location (red cells displayed in the b) panel) and
one power of the density in one cell (coloured in brown in the middle panel) at some arbitrary distance re from the rest, as described
in section 3.2. Those cumulants are the building blocks of the two-point PDF of concentric densities in the large-separation limit (see
equation 38). The corresponding configuration with n = 3 concentric cells in one location (red) and m = 3 concentric cells at a distance
re (brown) is displayed in the c) panel.

3.2 The n+1 cell formalism

Let us now consider the formal derivation of the generat-
ing function of joint cumulants for n + 1 cells centred on
the same point when the n + 1th radius, Rn+1 = re, is set
apart (at this stage there is no assumption on the relative
size of these radii). This configuration is illustrated in the
left-hand panel of Fig. 2 and is of particular interest since
we will show in this section how it can be used to predict
some configurations of the two-point statistics without any
assumption on the separation. Later, we will also use it as a
building block of the large-separation approximation of the
two-point correlation function of concentric densities (see
section 4.2). This generating function simply reads

'b({�k};< re) =
1X

pi=0

h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic
⇧i�

pi
i

⇧ipi!
, (24)

where ⇢(re) enters the cumulant h⇢(re)⇧n
i=1 ⇢i

pi(Ri)ic only
as a linear power. Equation (24) is the generating function
of the cumulants containing one power of the outer density
and arbitrary powers of the n inner densities. It simply cor-
responds to the first derivative of the cumulant generating
functions for n+ 1 cells taken at the origin

'b({�k};< re) =
@

@�n+1
'(�1, . . . ,�n+1)

���
�n+1=0

. (25)

Taking advantage of the stationary condition (23) applied
to �n+1, we also have

'b({�k};< re) = ⇢n+1(�1, . . . ,�n, 0) , (26)

where ⇢n+1 is in turn computed in terms of the �i from
the set of stationary conditions (20). Finally Equation (26)
can also be re-expressed via equation (17) in terms of the
corresponding linear density contrast as

'b({�k};< re) = ⇣ (⌧(re)) , (27)

where ⌧(re) ⌘ ⌧n+1(�1, · · · ,�n, 0) is to be computed as a
function of {�k} for the specific case where �n+1 is set to 0.
We can then take advantage of decimation (see Appendix A,
equation A14) to write ⌧(re) via the implicit equation:

⌧(re) =
nX

i=1

�
2(re ⇣(⌧(re))

1/3
, Ri ⇣(⌧i)

1/3)⇥

nX

j=1

⌅ij({Rk ⇣(⌧k)
1/3)})⌧j , (28)

where the tensor and vector quantities (⌅ij , ⌧i) are com-
puted when only the first n cells are considered (so that the
set

P
j=1,n ⌃ij⌅jk = �ik together with the stationary con-

ditions form a set of n coupled equations only). Technically,
equation (28) can be solved given the values of {⌧k}k=1,···n
which in turn can be expressed in terms of the variables
{�k}k=1,···n.

Now note that equations (27) and (28) can be used to
get the cumulant generating functions for any quantities lin-
early related to the density. In particular, the density in
an infinitesimal shell at a distance re reads ⇢(re < r <

re + dre) = d⇢(re)r
3
e/dr

3
e so the corresponding cumulant

generating function, 'b({�k}; re), can be written as

'b({�k}; re) =
1
r2e

d
dre

✓
r
3
e

3
'b({�k};< re)

◆
. (29)

Thanks to rotational invariance, the value of the cumulant
within an infinitesimal shell at a distance re is the same as if
the density was computed at a distance re in any direction.
Therefore, equation (29) also describes the cumulant gener-
ating function of concentric densities in spheres of radii Ri

(1 6 i 6 n) and density at some given distance re.
Finally note that the domain for ⇢e does not need to

be a spherical cell and equation (29) can subsequently be
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Joint statistics of count-in-cell 5

Figure 2. a) the configuration of 3 + 1 spherical cells in one location (red cells shown in the left-hand panel) can be used to compute
the joint cumulants involving any power of the density in 3 concentric cells in one location (red cells displayed in the b) panel) and
one power of the density in one cell (coloured in brown in the middle panel) at some arbitrary distance re from the rest, as described
in section 3.2. Those cumulants are the building blocks of the two-point PDF of concentric densities in the large-separation limit (see
equation 38). The corresponding configuration with n = 3 concentric cells in one location (red) and m = 3 concentric cells at a distance
re (brown) is displayed in the c) panel.
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Let us now consider the formal derivation of the generat-
ing function of joint cumulants for n + 1 cells centred on
the same point when the n + 1th radius, Rn+1 = re, is set
apart (at this stage there is no assumption on the relative
size of these radii). This configuration is illustrated in the
left-hand panel of Fig. 2 and is of particular interest since
we will show in this section how it can be used to predict
some configurations of the two-point statistics without any
assumption on the separation. Later, we will also use it as a
building block of the large-separation approximation of the
two-point correlation function of concentric densities (see
section 4.2). This generating function simply reads
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within an infinitesimal shell at a distance re is the same as if
the density was computed at a distance re in any direction.
Therefore, equation (29) also describes the cumulant gener-
ating function of concentric densities in spheres of radii Ri
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15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe

SC+16b

Error	budget	for	finite	volume	surveys?

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey

galaxy	bias?
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How to deal with biased tracers?
Halo	bias	can	be	accounted	for	and	marginalised	over	for	cosmological	experiments…

bias function
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We	use	a	quadra*c	log	bias	model: log ⇢m = b0 + �1� log ⇢h + �2� log2 ⇢h
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=b1 =b2
Measuring	the	PDF	then	allows	us	to	constrain	σ	and	the	bias	parameters:
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Measuring	the	PDF	then	allows	us	to	constrain	σ	and	the	bias	parameters:
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15,000	square	degrees	
R	=	10	h-1	Mpc	

0.1<z<1

PDF as a cosmological probe
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Error	budget	for	finite	volume	surveys?

dark energy equation of state
w=w0+(1-a)wa

FoM for a Euclid-like survey
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densities in redshift bins
Uhlemann+17e

Densi*es	in	long	cylinders:	same	formalism	applies	with	cylindrical	collapse
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‣ Multi-scale density PDF can be predicted in the mildly 
non-linear regime with surprising accuracy (<1% for 
σ=O(1)) even in the rare event tails 

‣ Predictions are fully analytical, parameter-free and 
explicitly cosmology-dependent 

‣ Cosmic variance can be predicted from first principle 

‣ We have an accurate model for biased density tracers, 
velocities, projected densities and (in progress) cosmic 
shear maps, including primordial non-Gaussianities 

Conclusion	

Large	devia5on	principle:	
an	unlikely	fluctuaQon	is	brought	about	by	the	least	unlikely	of	all	unlikely	paths.	


