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Introducing CosmoLike

Weak Lensing, Galaxy 
Clustering, Clusters, CMB, 

CMB-LSS correlations

Multi-Probe 
Covariances/Hybrid 

Estimators

Galaxy bias models 
(linear, quadratic, 

HOD)

Explore fundamental 
physics (cosmic 

acceleration, neutrinos, 
tests of gravity)

Systematics 
(photo-z, shape 
uncertainties)

Likelihood free 
inference 

Gaussianization of 
summary statistics

Numerical 
Simulations/
Emulators   

Astrophysics 
(Intrinsic alignment, 
Baryonic Physics)

Idea: consistent, multi-probe likelihood analysis software framework 
including
• Realistic statistical error bars (cross-probe covariances) 
• Cross-correlations of observables/systematics
• Efficient treatment of nuisance parameters



Project 1: Simulate a Multi-Probe 
Likelihood Analysis for LSST

cosmolike - cosmological likelihood analyses for 
photometric galaxy surveys

CosmoLike release paper (www.cosmolike.info) 
Krause & TE 2017

Theory+Sims+Stats -> Obs



Weak Lensing (cosmic shear) 

10 tomography bins 
25 l bins, 25 < l < 5000 

Galaxy clustering 

4 redshift bins (0.2-0.4,0.4-0.6,0.6-0.8,0.8-1.0) 
compare two samples: σz <0.04, redMaGiC   
linear + quadratic bias only : l bins restricted to R> 10 Mpc/h 
HOD modeling going to R>0.1 MPC/h 

Galaxy-galaxy lensing 

galaxies from clustering (as lenses) with shear sources 

Clusters - number counts + shear profile 

so far, 8 richness, 4 z-bins (same as clustering) 
tomographic cluster lensing (500 < l < 10000)

Example Data Vector and 
Systematics

shear calibration, 
photo-z (sources) 

IA, baryons

b1, b2,… 
photo-z (lenses)

N-M relation 
c-M relation 
off-centering



CosmoLike - “Inner Workings”
Krause & Eifler 2017

halo.c

cosmo3d.c
growth factor

D(k,z)

Plin(k,z)

distances Pnl(k,z)

Coyote U.
Emulator

collapse density

𝛿c(z) peak height
𝜈 (M,z)

halo properties
                                 

HOD, bias model

N(Mobs;zi)

CXY(l;zi,zj)

scaling relation
Mobs(M)

cluster
selection fuction

c(M,z) b(M,z) n(M,z)

z-distr.
n(z)

clusters.c

photo-z
model

redshift.c

projection 
functions

Limber 
approx.

cosmo2d.c

transfer function
T(k,z)

systematics.c

non-linear regime

galaxy formationcluster finding

intrinsic alignments

baryons

non-Gaussian 
photo-zs

shear calibration
...  ....  ....

P(k,zj)

Cov(z
i,z

j,z
k,z

l,l1,l2)

Likelihood

cosmological
parameters



Multi-Probes Forecasts: 
Covariance

details: Krause&TE ‘17

Cosmic Shear

Galaxy-
Galaxy 
Lensing

Galaxy 
Clustering

Cluster 
Lensing

Clusters

7+ million  
elements



The Power of Combining Probes

7 cosmological parameters 
49 nuisance parameters

• Shear Calibration,  
• Lens+Source photo-z,  
• Linear galaxy bias

• Cluster Mass 
Calibration 

• Intrinsic Alignments 
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Figure 2. Individual vs. multi-probe cosmological constraints. We show projected cosmological constraints for clustering (orange/dot-long dashed), cosmic
shear (red/dashed), cluster number counts (blue/dot-dashed) individually. The 3x2pt multi-probe contours (green/long-dashed) include information from clus-
tering, cosmic shear, and galaxy-galaxy lensing; the black/solid contours add information from cluster number counts and cluster weak lensing to the 3x2pt
data vector, altogether 2413 data points.

examine the impact of the covariances’ input cosmology on likeli-
hood contours in Sect. 4.3.

Given the likelihood function we can compute the posterior
probability in parameter space from Bayes’ theorem

P(pc,pn|D) / Pr(pc,pn) L(D|pc,pn), (21)

where Pr(pc,pn) denotes the prior probability (non-informative pri-
ors for the case of this paper).

3.4 Results - baseline scenario

Results of our baseline LSST likelihood analysis simulation are
shown in Fig. 2. All contours include systematic e↵ects that are
associated with the corresponding probe(s). Correspondingly, the
dimensionality of the likelihood analyses di↵ers substantially; it
ranges from 15 for the cluster number count analysis to 45 for the
joint analysis of all 5 probes considered in the data vector.

We find that the galaxy clustering analysis with the imposed
cut-o↵ scale of Rmin = 10.0Mpc/h is strongly a↵ected by system-
atics, most likely our unconstrained galaxy bias. Cosmic shear in
itself has relatively tight constraints, however we see a substan-
tial increase when combining the two aforementioned probes with
galaxy-galaxy lensing (denoted as 3x2pt).

Whereas cluster number counts alone gives the weakest con-
straints overall, it is extremely promising when combining it with
the 3x2pt scenario and adding cluster weak lensing to calibrate
cluster masses. The information gain from 3x2pt to the scenario
where all probes are included is remarkable. One reason is the fact
that clusters contribute small scale clustering information from the
1H-term, which is not present in the clustering or galaxy-galaxy
lensing data (also see Sect. 4.2). Another reason to caution against
overestimating the e↵ect of clusters is the fact that we have not
yet considered galaxy cluster mis-centering, assembly bias and
stochasticity as additional uncertainties.

MNRAS 000, 1–13 (2014)
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tering, cosmic shear, and galaxy-galaxy lensing; the black/solid contours add information from cluster number counts and cluster weak lensing to the 3x2pt
data vector, altogether 2413 data points.

examine the impact of the covariances’ input cosmology on likeli-
hood contours in Sect. 4.3.

Given the likelihood function we can compute the posterior
probability in parameter space from Bayes’ theorem

P(pc,pn|D) / Pr(pc,pn) L(D|pc,pn), (21)

where Pr(pc,pn) denotes the prior probability (non-informative pri-
ors for the case of this paper).

3.4 Results - baseline scenario

Results of our baseline LSST likelihood analysis simulation are
shown in Fig. 2. All contours include systematic e↵ects that are
associated with the corresponding probe(s). Correspondingly, the
dimensionality of the likelihood analyses di↵ers substantially; it
ranges from 15 for the cluster number count analysis to 45 for the
joint analysis of all 5 probes considered in the data vector.

We find that the galaxy clustering analysis with the imposed
cut-o↵ scale of Rmin = 10.0Mpc/h is strongly a↵ected by system-
atics, most likely our unconstrained galaxy bias. Cosmic shear in
itself has relatively tight constraints, however we see a substan-
tial increase when combining the two aforementioned probes with
galaxy-galaxy lensing (denoted as 3x2pt).

Whereas cluster number counts alone gives the weakest con-
straints overall, it is extremely promising when combining it with
the 3x2pt scenario and adding cluster weak lensing to calibrate
cluster masses. The information gain from 3x2pt to the scenario
where all probes are included is remarkable. One reason is the fact
that clusters contribute small scale clustering information from the
1H-term, which is not present in the clustering or galaxy-galaxy
lensing data (also see Sect. 4.2). Another reason to caution against
overestimating the e↵ect of clusters is the fact that we have not
yet considered galaxy cluster mis-centering, assembly bias and
stochasticity as additional uncertainties.
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Figure 2. Individual vs. multi-probe cosmological constraints. We show projected cosmological constraints for clustering (orange/dot-long dashed), cosmic
shear (red/dashed), cluster number counts (blue/dot-dashed) individually. The 3x2pt multi-probe contours (green/long-dashed) include information from clus-
tering, cosmic shear, and galaxy-galaxy lensing; the black/solid contours add information from cluster number counts and cluster weak lensing to the 3x2pt
data vector, altogether 2413 data points.

examine the impact of the covariances’ input cosmology on likeli-
hood contours in Sect. 4.3.

Given the likelihood function we can compute the posterior
probability in parameter space from Bayes’ theorem

P(pc,pn|D) / Pr(pc,pn) L(D|pc,pn), (21)

where Pr(pc,pn) denotes the prior probability (non-informative pri-
ors for the case of this paper).

3.4 Results - baseline scenario

Results of our baseline LSST likelihood analysis simulation are
shown in Fig. 2. All contours include systematic e↵ects that are
associated with the corresponding probe(s). Correspondingly, the
dimensionality of the likelihood analyses di↵ers substantially; it
ranges from 15 for the cluster number count analysis to 45 for the
joint analysis of all 5 probes considered in the data vector.

We find that the galaxy clustering analysis with the imposed
cut-o↵ scale of Rmin = 10.0Mpc/h is strongly a↵ected by system-
atics, most likely our unconstrained galaxy bias. Cosmic shear in
itself has relatively tight constraints, however we see a substan-
tial increase when combining the two aforementioned probes with
galaxy-galaxy lensing (denoted as 3x2pt).

Whereas cluster number counts alone gives the weakest con-
straints overall, it is extremely promising when combining it with
the 3x2pt scenario and adding cluster weak lensing to calibrate
cluster masses. The information gain from 3x2pt to the scenario
where all probes are included is remarkable. One reason is the fact
that clusters contribute small scale clustering information from the
1H-term, which is not present in the clustering or galaxy-galaxy
lensing data (also see Sect. 4.2). Another reason to caution against
overestimating the e↵ect of clusters is the fact that we have not
yet considered galaxy cluster mis-centering, assembly bias and
stochasticity as additional uncertainties.

MNRAS 000, 1–13 (2014)
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• Very non-linear gain in 
constraining power 

• Most stringent 
requirements on 
numerical simulations, 
photo-z, shear 
calibration, etc flow 
from Multi-Probe 
statistical limits 



Project 2: Exploring WFIRST 
survey strategies

Project within the WFIRST Cosmology with the 
High Latitude Survey Science Investigation Team 

TE et al in prep

Theory+Sims+Stats -> Obs



Individual vs multi-
probe WFIRST analysis

Modified Gravity

All-In Systematics 
76 dimensions (7 

cosmology, 69 
systematics)



WFIRST - LSST synergies
Possible WFIRST extension of 

1.6 years overlapping with LSST



Project 3: 
New statistical methods to 

reduce Super-Computing needs

Precision matrix expansion - efficient use of numerical 
simulations in estimating errors on cosmological parameters 

Friedrich & TE 2018 

Theory+Stats -> Sims



The Problem: Inverse 
Covariance Estimation

Analytical covariance model relies on approximations that 
might be too imprecise for an LSST Y10 data set 

Estimation the covariance from numerical simulations (brute 
force), requires 10^5-10^6 realizations of an LSST Year 10 
like survey to shield against noise in the estimator 

Why?  
The estimated inverse covariance is not the inverse of the 
estimated covariance 
High-dimensionality of the data vector -> many elements in 
the covariance
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
 
�1

2
�2

h
⇡⇡⇡ | ⇠̂⇠⇠,C

i!
p(⇡⇡⇡) (1)

with

�2
h
⇡⇡⇡ | ⇠̂⇠⇠,C

i
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⇣
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⌘
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C
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⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
(2)

and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠

i

, i = 1...N
s

, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

ˆ

C :=
1
⌫

N

sX

i=1

⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘ ⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘
T

, (3)

where ⌫ = N

s

� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
⌫�N

d

�1
⌫

ˆ

C

�1 (4)

and we will call the factor of (⌫�N

d

�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

ˆ 
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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, i = 1...N
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, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by
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where ⌫ = N
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� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as
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and we will call the factor of (⌫�N
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�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠
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Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N
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The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦
m

,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B
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which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from
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is our model for the complete covariance matrix,
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to

MNRAS 000, 000–000 (0000)

precision matrix expansion 3

Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
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where for matrix A we have an accurate model (e.g. the shape-
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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sian parameter likelihood and is only applicable to the extent that a
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with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
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a standard covariance estimate into consistency with those derived
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ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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use ˆ

B to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that ˆ

B is drawn from a Wishart dis-
tribution with expectation value B. In this case also M

�1
ˆ

BM

�1

is Wishart distributed but with the expectation value M

�1
BM

�1.
Hence an unbiased estimator for the first order PME is given by
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m

⌘
M

�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

N

s

�N

d

�4 while for Wishart distributed matrices it is only
proportional to 1/

p
N

s

�1. Hence, avoiding the occurence of an
inverted matrix estimate greatly reduces the estimation noise.

The second order term involves squares of Wishart matrices.
Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as
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The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if N

s

6 N

d

. Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood anal-
ysis the noise in ˆ 2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and

DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, C

nn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦
m

-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations ˆ

B and ˆ

C of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
N

s

= 200 simulations where assumed for the estimation of the PME while
N

s

= N

d

+200 = 650 simulations where assumed for the standard estimator.
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠

i

, i = 1...N
s

, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

ˆ
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⌫
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where ⌫ = N

s

� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
⌫�N

d

�1
⌫

ˆ

C

�1 (4)

and we will call the factor of (⌫�N

d

�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
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⌘
T
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⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
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data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N
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pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
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and we will call the factor of (⌫�N
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�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
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results.
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distributed (cf. Taylor et al. 2013).
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Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N
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The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦
m

,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B
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which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B
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is our model for the complete covariance matrix,
we rewrite
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.
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Let us split the covariance matrix C into two contributions
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where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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variance estimate. We demonstrate this in the right-hand panel of
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rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
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at least as many realisations as data points in the data vector to even
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ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
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contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
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fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B
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) , (7)

where M=A+B
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is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B
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�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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use ˆ

B to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that ˆ

B is drawn from a Wishart dis-
tribution with expectation value B. In this case also M

�1
ˆ

BM

�1

is Wishart distributed but with the expectation value M

�1
BM

�1.
Hence an unbiased estimator for the first order PME is given by

ˆ 1st = M

�1 �M

�1
⇣

ˆ

B�B

m

⌘
M

�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

N

s

�N

d

�4 while for Wishart distributed matrices it is only
proportional to 1/

p
N

s

�1. Hence, avoiding the occurence of an
inverted matrix estimate greatly reduces the estimation noise.

The second order term involves squares of Wishart matrices.
Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as

ˆ 2nd = M

�1 +M

�1
B

m

M

�1
B

m

M

�1

�M

�1
⇣

ˆ

B�B

m

⌘
M

�1

�M

�1
ˆ

BM

�1
B

m

M

�1

�M

�1
B

m

M

�1
ˆ

BM

�1

+M

�1
⌫2 ˆ

BM

�1
ˆ

B� ⌫ ˆ

B tr
⇣
M

�1
ˆ

B

⌘

⌫2 + ⌫�2
M

�1 . (12)

The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if N

s

6 N

d

. Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood anal-
ysis the noise in ˆ 2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and

DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, C

nn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦
m

-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations ˆ

B and ˆ

C of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
N

s

= 200 simulations where assumed for the estimation of the PME while
N

s

= N

d

+200 = 650 simulations where assumed for the standard estimator.
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
 
�1

2
�2

h
⇡⇡⇡ | ⇠̂⇠⇠,C

i!
p(⇡⇡⇡) (1)

with

�2
h
⇡⇡⇡ | ⇠̂⇠⇠,C

i
=

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

C

�1
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
(2)

and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠

i

, i = 1...N
s

, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

ˆ

C :=
1
⌫

N

sX

i=1

⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘ ⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘
T

, (3)

where ⌫ = N

s

� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
⌫�N

d

�1
⌫

ˆ

C

�1 (4)

and we will call the factor of (⌫�N

d

�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

ˆ 
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Anderson 2003). The noise properties of this corrected precision
matrix estimator and its impact on the constraints derived on cos-
mological parameters was e.g. investigated by Taylor, Joachimi &
Kitching (2013), Dodelson & Schneider (2013), Taylor & Joachimi
(2014).

Sellentin & Heavens (2016, hereafter SH16a) have presented a
different approach: given a covariance estimate they marginalize
over the posterior distribution of the precision matrix to compute
the likelihood in parameter space. Assuming that the covariance
estimate follows a Wishart distribution they have derived a simple,
closed-form expression for the resulting likelihood function. In
Sellentin & Heavens (2017) they have extended these results
to derive the information loss in parameter space due to noisy
covariance estimates. A fully non-Gaussian treatment of the effects
discussed in Dodelson & Schneider (2013, hereafter DS13) is
however still missing.

An important result of the above-mentioned works is the fol-
lowing: even if a set of simulations is large enough to give a
precise estimate of the covariance, the process of inverting this
covariance estimate amplifies the noise of the estimation in a way
that can still significantly impact the constraining power of a cos-
mological analysis, i.e. the uncertainty of the derived parameter
errors can still be comparable to the errors themselves (see e.g.
equations 27 and 28 of Dodelson & Schneider 2013). To overcome
this problem it is important to note that often major contributions
to the covariance matrix are analytically well understood. Estimat-
ing these contributions with the help of simulated data is hence
a significant waste of computational resources and incorporating
prior knowledge about the covariance into the estimate can poten-
tially decrease uncertainties on the error budget of a cosmological
analysis.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and
Padmanabhan et al. (2016) to improve estimates of the precision
matrix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman–Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estima-
tor which combines covariance estimates from two sets of in-
dependent data vector realizations and hence does not require a
covariance model.

In this paper we introduce a way of incorporating prior knowl-
edge about the covariance directly into an estimate of the inverse
covariance matrix, i.e. the precision matrix. We describe a way to
expand the precision matrix around a covariance model as a power
series in the deviation between model and true covariance. Assum-
ing a Wishart realization for the true covariance (e.g. an estimate
from N-body simulations) and using the results on invariant mo-
ments of the Wishart distribution by Letac & Massam (2004) we
derive an unbiased estimator for the up to second-order expansion
of the true precision matrix. This becomes especially powerful if
parts of the covariance matrix that are well understood analytically
can be turned off in simulations in order to yield a direct estimate
of the remaining covariance parts. In Section 3 we recap the main
problems of estimating parameter constraints from noisy covariance
estimates and present our method of ‘precision matrix expansion’
(PME). In Section 4 we perform numerical experiments that mimic
data from the DES and the LSST likelihood analyses to test the
performance of our idea. Section 5 concludes with a discussion of
our results.

2 PARAMETER CONSTRAINTS FRO M N OISY
C OVA R I A N C E E S T I M AT E S

We begin by outlining the main task of this paper. Let ξ̂ be a vector
of Nd data points measured from observational data and let ξ [π ] be a
model for this data vector that depends on a vector of Np parameters
π . If C is the covariance matrix of ξ̂ then a standard way to constrain
the parameters π is to assign a posterior distribution p(π |ξ̂ ) to them
as

p(π |ξ̂ ) ∼ exp
(

−1
2
χ2

[
π | ξ̂ ,C

])
p(π) (1)

with

χ2
[
π | ξ̂ ,C

]
=

(
ξ̂ − ξ [π]

)T
C−1

(
ξ̂ − ξ [π]

)
(2)

and p(π) being a prior density incorporating a priori knowledge
or assumptions on π . These expressions in fact ignore that C also
can be dependent on π . We will do this throughout this paper and
refer the reader to Eifler, Schneider & Hartlap (2009) who investi-
gated the impact of cosmology-dependent covariance matrices on
cosmic shear likelihood analyses. Another assumption that goes
into equation (1) is that the measured data vector ξ̂ is drawn from
a multivariate Gaussian distribution. In wide area surveys this is
justified in the limit where one can consider the survey to consist of
many independent sub-regions, such that the measurements in those
regions add up to a Gaussian data vector by means of the central
limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ξ̂ i , i = 1...Ns, are a number
of independent measurements of ξ in simulations then an unbiased
estimate of C is given by

Ĉ := 1
ν

N s∑

i=1

(
ξ̂ i − ξ̄

) (
ξ̂ i − ξ̄

)T

, (3)

where ν = Ns − 1 and ξ̄ is the sample mean of the ξ̂ i . We will
assume Ĉ to have a Wishart distribution with ν degrees of freedom
which follows from our assumption that ξ̂ and the ξ̂ i are Gaussian
distributed (cf. Taylor et al. 2013). Also, we will assume that Ĉ is
an unbiased estimator for the covariance matrix of actual data, i.e.
if Ĉ is indeed an estimate from N-body simulations, then we will
assume these simulations to well resemble the error constributions
present in actual data.

To compute the likelihood in equation (1) we need to know the
precision matrix, i.e. is the inverse covariance matrix # = C−1.
According to Kaufman (1967, see also Hartlap et al. 2007; Taylor
et al. 2013) an unbiased estimator for # can be constructed from Ĉ
as

#̂ = ν − Nd − 1
ν

Ĉ−1 (4)

and we will call the factor of (ν − Nd − 1)/ν the Kaufman–Hartlap
correction.

Given a measurement ξ̂ of the data vector one can derive the
posterior density of the model parameters p(π |ξ̂ ) by means of
equations (1) and (2). A noisy precision matrix estimate influences
this inference in two ways:

(i) it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit χ2

(equation 2).
(ii) it adds noise to the location of likelihood contours. Consider

e.g. the maximum likelihood estimator for the parameters, π̂ML,
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠
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are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C
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Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N
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.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠
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are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C
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Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N
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The more critical e↵ect however is the additional noise of
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠
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which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠
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To compute the likelihood in Eq. 1 we need to know the preci-
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Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N
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ble if N
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦
m

,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from
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where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
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derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
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a Wishart realisation of the covariance (N
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
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ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
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tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
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derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.
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appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
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hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
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Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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use ˆ

B to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that ˆ

B is drawn from a Wishart dis-
tribution with expectation value B. In this case also M

�1
ˆ

BM

�1

is Wishart distributed but with the expectation value M

�1
BM

�1.
Hence an unbiased estimator for the first order PME is given by

ˆ 1st = M
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m
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�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

N

s

�N

d

�4 while for Wishart distributed matrices it is only
proportional to 1/

p
N

s

�1. Hence, avoiding the occurence of an
inverted matrix estimate greatly reduces the estimation noise.

The second order term involves squares of Wishart matrices.
Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as
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The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if N

s

6 N

d

. Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood anal-
ysis the noise in ˆ 2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and

DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, C

nn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦
m

-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations ˆ

B and ˆ

C of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
N

s

= 200 simulations where assumed for the estimation of the PME while
N

s

= N

d

+200 = 650 simulations where assumed for the standard estimator.

MNRAS 000, 000–000 (0000)

Invert 
and expand as 
power series

Build 
Estimator

Only matrix multiplication, no inversion of estimated quantities



2 Friedrich, Eifler

covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as
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When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
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which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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Figure 1. Left: Best fit parameter pairs (⌦
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined
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) M
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�1 can then be expressed as the follow-
ing power series in X:
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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a Wishart realisation of the covariance (N
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= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions
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where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B
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which we know to be im-
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions
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where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions
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where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦
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(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.
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overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.
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where for matrix A we have an accurate model (e.g. the shape-
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We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).
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di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
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fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
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hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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use ˆ

B to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that ˆ

B is drawn from a Wishart dis-
tribution with expectation value B. In this case also M

�1
ˆ

BM

�1

is Wishart distributed but with the expectation value M

�1
BM

�1.
Hence an unbiased estimator for the first order PME is given by

ˆ 1st = M

�1 �M

�1
⇣

ˆ

B�B

m

⌘
M

�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

N

s

�N

d

�4 while for Wishart distributed matrices it is only
proportional to 1/

p
N

s

�1. Hence, avoiding the occurence of an
inverted matrix estimate greatly reduces the estimation noise.

The second order term involves squares of Wishart matrices.
Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as

ˆ 2nd = M

�1 +M

�1
B

m

M

�1
B

m

M

�1

�M

�1
⇣

ˆ

B�B

m

⌘
M

�1

�M

�1
ˆ

BM

�1
B

m

M

�1

�M

�1
B

m

M

�1
ˆ

BM

�1

+M

�1
⌫2 ˆ

BM

�1
ˆ

B� ⌫ ˆ

B tr
⇣
M

�1
ˆ

B

⌘

⌫2 + ⌫�2
M

�1 . (12)

The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if N

s

6 N

d

. Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood anal-
ysis the noise in ˆ 2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and

DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, C

nn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦
m

-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations ˆ

B and ˆ

C of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
N

s

= 200 simulations where assumed for the estimation of the PME while
N

s

= N

d

+200 = 650 simulations where assumed for the standard estimator.
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
 
�1

2
�2

h
⇡⇡⇡ | ⇠̂⇠⇠,C

i!
p(⇡⇡⇡) (1)

with

�2
h
⇡⇡⇡ | ⇠̂⇠⇠,C

i
=

⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

C

�1
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
(2)

and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠

i

, i = 1...N
s

, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

ˆ

C :=
1
⌫

N

sX

i=1

⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘ ⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘
T

, (3)

where ⌫ = N

s

� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
⌫�N

d

�1
⌫

ˆ

C

�1 (4)

and we will call the factor of (⌫�N

d

�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

ˆ 
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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covariance estimates. A fully non-Gaussian treatment of the e↵ects
discussed in Dodelson & Schneider (2013, hereafter DS13) is how-
ever still missing.

Prior knowledge on the sparsity of the covariance matrix and
the precision matrix was used by Paz & Sánchez (2015) and Pad-
manabhan et al. (2015) to improve estimates of the precision ma-
trix from few simulations. Pope & Szapudi (2008) investigated
shrinkage estimators of the covariance, i.e. a mixing of estimated
and modelled covariance matrices. This however raises the task
of finding an equivalent to the Kaufman-Hartlap correction for
such a mixture of estimated and analytic matrices. More recently,
Joachimi (2017) describes a non-linear extension of that estimator
which combines covariance estimates from two sets of independent
data vector realisations and hence does not require a covariance
model.

In this paper we describe a way to expand the true precision
matrix around a covariance model as a power series in the devia-
tion between model and true covariance. Assuming a Wishart re-
alisation for the true covariance and using the results on invariant
moments of the Wishart distribution by Letac & Massam (2004)
we derive an unbiased estimator for the up to second order expan-
sion of the true precision matrix. This becomes especially powerful
if parts of the covariance matrix that are well understood analyt-
ically can be turned o↵ in simulations in order to yield a direct
estimate of the remaining covariance parts. In Sect. 3 we recap
the main problems of estimating parameter constraints from noisy
covariance estimates and present our method of "Precision Matrix
Expansion" (PME). In Sect. 4 we perform numerical experiments
that mimic data from the Dark Energy Survey (DES) and the Large
Synoptic Survey Telecope (LSST) likelihood analyses to test the
performance of our idea. Sect. 5 concludes with a discussion of our
results.

2 Parameter constraints from noisy covariance estimates

We begin by outlining the main task of this paper. Let ⇠̂⇠⇠ be a vector
of N

d

data points measured from observational data and let ⇠⇠⇠[⇡⇡⇡]
be a model for this data vector that depends on a vector of N

p

pa-
rameters ⇡⇡⇡. If C is the covariance matrix of ⇠̂⇠⇠ then a standard way
to constrain the parameters ⇡⇡⇡ is to assign a posterior distribution
p(⇡⇡⇡|⇠̂⇠⇠) to them as

p(⇡⇡⇡|⇠̂⇠⇠) ⇠ exp
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with
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and p(⇡⇡⇡) being a prior density incorporating apriori knowledge or
assumptions on ⇡⇡⇡. These expressions in fact ignore that C also can
be depedent on ⇡⇡⇡. We will do this throughout this paper and re-
fer the reader to Eifler et al. (2009) who investigated the impact of
cosmology dependent covariance matrices on cosmic shear likeli-
hood analyses. Another assumption that goes into Eq. 1 is that the
measured data vector ⇠̂⇠⇠ is drawn from a multi-variate Gaussian dis-
tribution. In wide area surveys this is justified in the limit where
one can consider the survey to consist of many independent sub-
regions, such that the measurements in those regions add up to a
Gaussian data vector by means of the central limit theorem.

If the covariance matrix C is not exactly known, it can e.g. be
estimated from N-body simulations. If ⇠̂⇠⇠

i

, i = 1...N
s

, are a number

of independent measurements of ⇠⇠⇠ in simulations then an unbiased
estimate of C is given by

ˆ

C :=
1
⌫

N

sX

i=1

⇣
⇠̂⇠⇠

i

� ⇠̄⇠⇠
⌘ ⇣
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⌘
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, (3)

where ⌫ = N

s

� 1 and ⇠̄⇠⇠ is the sample mean of the ⇠̂⇠⇠
i

. We will as-
sume ˆ

C to have a Wishart distribution with ⌫ degrees of freedom
which follows from our assumption that ⇠̂⇠⇠ and the ⇠̂⇠⇠

i

are Gaussian
distributed (cf. Taylor et al. 2013).

To compute the likelihood in Eq. 1 we need to know the preci-
sion matrix, i.e. is the inverse covariance matrix  = C

�1. Accord-
ing to Kaufman (1967, see also Hartlap et al. 2007; Taylor et al.
2013) an unbiased estimator for  can be constructed from ˆ

C as

ˆ =
⌫�N

d

�1
⌫

ˆ

C

�1 (4)

and we will call the factor of (⌫�N

d

�1)/⌫ the Kaufman-Hartlap-
correction.

Given a measurement ⇠̂⇠⇠ of the data vector one can derive the
posterior density of the model parameters p(⇡⇡⇡|⇠̂⇠⇠) by means of equa-
tions 1 and 2. A noisy precision matrix estimate influences this in-
ference in two ways:

• it adds noise to the width of likelihood contours derived from
inserting the precision matrix estimate into the figure of merit �2

(Eq. 2).
• it adds noise to the location of likelihood contours. E.g. the maxi-
mum likelihood estimator for the parameters ⇡⇡⇡ would be

⇡̂⇡⇡ML =min
⇡⇡⇡

⇢⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘
T

ˆ 
⇣
⇠̂⇠⇠� ⇠⇠⇠[⇡⇡⇡]

⌘�
. (5)

When using a noisy precision matrix the uncertainties of ⇡̂⇡⇡ML have
contributions from both the noise in ⇠̂⇠⇠ and the noise in ˆ .

The astro-statistics literature has so far focused on the first
e↵ect, i.e. on the uncertainties on contour width due to noise in
the estimate ˆ (Taylor et al. 2013; Taylor & Joachimi 2014; Sel-
lentin & Heavens 2016a,b). Sellentin & Heavens (2016b) provide
the most complete demonstration that ˆ yields a good estimate of
the width of the posterior contours as long as N

s

�N

d

� N

p

.
The more critical e↵ect however is the additional noise of

⇡̂⇡⇡ML. DS13 (also see appendix A) showed that the uncertainty on
the position of likelihood contours from noise in ˆ is only negligi-
ble if N

s

�N

d

� N

d

�N

p

which is a much more demanding crite-
rion for current cosmological data vectors. We demonstrate this in
the left-hand panel of Fig. 1, where we show 100 randomly drawn
realisations of a DES-like weak lensing data vector with N

d

= 450
and a halo model covariance matrix (see Sec. 4 for further details).
For each of the 100 data vectors we have also generated Wishart
realisations of our covariance matrix corresponding to an estimate
from N

s

= 650 simulations. Using either the true covariance or the
estimated one, we then determine the best fitting parameters ⌦

m

and �8 (after marginalizing over equation-of-state parameters of
dark energy, w0 and w

a

). The best-fits obtained from a noisy co-
variance (green points) clearly display a much larger scatter than
those obtained from the true covariance (red points). Also shown
are the best fits obtained by precision matrix expansion (PME, blue
points) which we are going to introduce in the next section. Here
we assumed that only N

s

= 200 simulations are available to estimate
the PME, which gives best fit values that are significantly closer to
the ones obtained when knowing the true covariance matrix.

When reconstructing p(⇡⇡⇡|⇠̂⇠⇠) (e.g. from a Monte-Carlo-
Markov-Chain) this can lead to significant o↵sets between likeli-
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use ˆ

B to construct unbiased estimators for the first order and second
order term of the series in Eq. 10.

Our assumptions state that ˆ

B is drawn from a Wishart dis-
tribution with expectation value B. In this case also M

�1
ˆ

BM

�1

is Wishart distributed but with the expectation value M

�1
BM

�1.
Hence an unbiased estimator for the first order PME is given by

ˆ 1st = M

�1 �M
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⇣
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B�B

m

⌘
M

�1 . (11)

Note that this does not involve the inversion of an estimated matrix.
According to Taylor et al. (2013) the standard deviation of diagonal
elements of an inverse-Wishart distributed matrix is proportional to
1/
p

N

s

�N

d

�4 while for Wishart distributed matrices it is only
proportional to 1/

p
N

s

�1. Hence, avoiding the occurence of an
inverted matrix estimate greatly reduces the estimation noise.

The second order term involves squares of Wishart matrices.
Using the results of Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix B) it is still possible to
construct an unbiased estimator for the second order PME as
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The estimator in Eq. 12 is the key result of our paper. It has two ad-
vantages over the Anderson-Hartlap corrected standard estimator.
First, it only requires matrix multiplications. As a consequence, it
can even be used if N

s

6 N

d

. Second, it only needs an estimate of
B instead of the whole covariance C, i.e. it allows to incorporate
apriori knowledge on the covariance in the form of M (and A).

In the next section we demonstrate that this significantly eases
the requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood anal-
ysis the noise in ˆ 2nd becomes negligible for a much smaller num-
ber of N-body simulations than required by the standard precision
matrix estimator. In appendix C we also show that the bias in pa-
rameter constraints which arises from cutting the power series in
Eq. 10 after a finite number of terms is negligible even for very
strong deviations of our covariance model M from the N-body co-
variance C.

4 Examples: parameter errors for LSST weak lensing and

DES weak lensing and multi-probe analyses

We investigate the performance of our method in the context of
ongoing and future surveys using DES and LSST as specific exam-
ples. These surveys di↵er in terms of survey area, galaxy number
density, and redshift distribution and have di↵erent demands on the
precision matrix. For DES we consider summary statistics in real
space, i.e. auto- and cross-correlation functions of galaxy shear and
position, for LSST we consider the corresponding Fourier quanti-
ties of a shear-shear only data vector. A summary of the scenarios
considered is given in Table 1 and a more detailed description of
the considered data vectors is given in appendix D.

In order to test the performance of PME we set up mock ex-
periments where we assume the true covariance matrix of each sur-
vey to be the analytic halo-model covariance described in Krause
& Eifler (2016). This model divides the covariance into three con-
tributions: a noise-only part that consists of shape- and shot-noise
contributions, C

nn, a contribution from the cosmic variance of the

Figure 2. Contours in the ⌦
m

-�8 plane obtained from realizations of our
DES-like weak lensing data vector after marginalizing over all other param-
eters. For each random seed also new Wishart realisations ˆ

B and ˆ

C of the
matrices B and C were drawn in order to simulate new realisations of the
second order PME estimator and the standard precision matrix estimator.
N

s

= 200 simulations where assumed for the estimation of the PME while
N

s

= N

d

+200 = 650 simulations where assumed for the standard estimator.
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New estimator performance

Instead of >10^5 our new estimator only requires ~2000 numerical 
simulations (LSST case) 
Given that 1 sim is 1M CPUh, at 1c/CPUh 
New method reduces cost $1B to $20M (-> fund theorists!) 
Next step: data compression

Precision Matrix Expansion 3

Figure 1. Left: Best fit parameter pairs (⌦
m

,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw a
Wishart realisation of the covariance (N

s

= 450+200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision matrix
expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our fiducial
covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8 plane after
marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart estimate of the covariance are clearly o↵set from those obtained
from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter space, which in
this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of PME manages to
significantly decrease this contour o↵set.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (7)

where for matrix A we have an accurate model (eg. the shape-noise
contributions to the covariance of cosmic shear correlation func-
tions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (8)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (9)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (10)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (11)

We will call this series the precision matrix expansion (PME). In
appendix B we show that it converges under a wide range of con-
ditions. There we also demonstrate, that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.0.1 Estimating the expansion of  

Given a Wishart estimate ˆ

B of B an unbiased estimator for the first
order PME is given by

ˆ 1st = M

�1 �M

�1
⇣

ˆ

B�B

m

⌘
M

�1 . (12)

The second order expansion involves squares of Wishart matrices.
Using the results Letac & Massam (2004) on invariant moments
of the Wishart distribution (cf. appendix C) we can construct an
unbiased estimator for the second order PME as

ˆ 2nd = M

�1 +M

�1
B

m

M

�1
B

m

M

�1

�M

�1
⇣

ˆ

B�B

m

⌘
M

�1

�M

�1
ˆ

BM

�1
B

m

M

�1

�M

�1
B

m

M

�1
ˆ

BM

�1

+M

�1
⌫2 ˆ

BM

�1
ˆ

B� ⌫ ˆ

B tr
⇣
M

�1
ˆ

B

⌘

⌫2 + ⌫�2
M

�1 . (13)

Note, that this estimator requires only matrix multiplications.
Hence, in contrast to the Anderson-Hartlap corrected standard esti-
mator, it can even be used if N

s

6 N

d

. The benefit of the estimator
in Eq. 13 is hence twofold:

1. It only needs an estimate of B instead of the whole covariance
C.

2. It doesn’t involve the inversion of an estimated matrix.

In the next section we demonstrate, that this significantly eases the
requirement of N

s

�N

d

� N

d

�N

p

. Hence, in a likelihood analysis
the noise in ˆ 2nd becomes negligible for a much smaller number of
N-body simulations than required by the standard precision matrix
estimator. In appendix B we also show that the bias in parameter
constraints which arises from cutting the power series in Eq. 11
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Figure 1. Left: Best fit parameter pairs (⌦
m

,�8) obtained from random realisations of a DES-like weak lensing data vector with 450 data points when using
di↵erent approaches to compute the precision matrix. The red points assume that the true covariance matrix is known while for the green points we draw
a Wishart realisation of the covariance (N

s

= 450+ 200 = 650 simulations) for each data vector. The blue points are obtained with the method of precision
matrix expansion (and allowing only 200 simulations to estimate the expansion). The black contours display the 1� and 2� Fisher contours derived from our
fiducial covariance. Right: For one of the random realisations we perform a complete likelihood analysis and show the 1� and 2� contours in the ⌦

m

��8
plane after marginalizing over w0 and w

a

(see Sec. 4 for details). The contours obtained from the Wishart realisation of the covariance are clearly o↵set from
those obtained from the true covariance matrix. We recommend to account for this by expanding the likelihood around its maximum (of the full parameter
space, which in this figure is 4-dimensional) with the factor derived by DS13. This leads to a decreased contraining power of our mock survey. The use of
PME manages to significantly decrease this contour o↵set.

hood contours inferred from the true covariance matrix and like-
lihood contours inferred from a covariance estimate – even if the
overall width of the likelihood contours is captured well by the co-
variance estimate. We demonstrate this in the right-hand panel of
figure 1. DS13 have derived a factor (see appendix A) by which pa-
rameter contours obtained from a Wishart realisation of the covari-
ance should be expanded in order to account for this additional scat-
ter. However, their derivation relies on the assumption of a Gaus-
sian parameter likelihood and is only applicable to the extent that a
Fisher analysis is accurate. The current state of the art for dealing
with noisy covariance estimates is hence a combination of SH16a
and DS13: expanding the contours derived from the SH16a likeli-
hood by the DS13 factor. We implement this idea for the cyan con-
tours in Fig. 1 and show that this brings the contours derived from
a standard covariance estimate into consistency with those derived
from the true covariance.

Downsides of this approach are a large increase of the uncer-
tainties on cosmological parameters and the fact that one still needs
at least as many realisations as data points in the data vector to even
derive a precision matrix estimate. We now want to introduce an al-
ternative method to estimate the precision matrix which is able to
drastically decrease the o↵set of contours seen for the standard pre-
cision matrix estimator.

3 Precision matrix expansion

Let us split the covariance matrix C into two contributions

C = A+B , (6)

where for matrix A we have an accurate model (e.g. the shape-
noise contributions to the covariance of cosmic shear correlation

functions) and for B we have a model B

m

which we know to be im-
perfect. We want to include this prior knowledge of the covariance
matrix when estimating the precision matrix. Starting from

C =M+ (B�B

m

) , (7)

where M=A+B

m

is our model for the complete covariance matrix,
we rewrite

C = (1+X

)
M , (8)

where 1 is the identity matrix and we have defined

X := (B�B

m

) M

�1 . (9)

The precision matrix  =C

�1 can then be expressed as the follow-
ing power series in X:

 = M

�1

0
BBBBBB@
1X

k=0
(�1)k

X

k

1
CCCCCCA

= M

�1
⇣
1�X+X

2 +O
h
X

3
i⌘
. (10)

We will call this series the precision matrix expansion (PME). In
appendix C we show that it converges under a wide range of con-
ditions. There we also demonstrate that the series yields at each
order a symmetric approximation of  and that at second order it
is always positive definite (at each order if the series converges).

3.1 Estimating the expansion of  

Suppose we have an estimate ˆ

B of the matrix B from a number
of N-body simulations. This especially assumes that all covariance
contributions included in A can be turned o↵ in the simulations
(i.e. for cosmic shear covariances A could consist of shape-noise
contributions which can be set to zero in simulations). We want to
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Project 4: Synergies of CMB-
S4 and LSST

Looking through the same lens: Shear calibration for LSST, 
Euclid, and WFIRST with stage 4 CMB lensing

Schaan, Krause, TE et al 2017

Obs -> Theory/Sims
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FIG. 13. Cosmological constraints from LSST and CMB S4 lensing. We marginalize over all the nuisance parameters, relaxing
completely the priors on shear biases. The red zones indicate the 68% and 95% confidence regions. Striking features are the
negative correlations for ⌦0

m

��
8

, �
8

�w
0

, w
0

�w
a

and the positive correlations for ⌦0

m

�w
0

, h
0

�⌦0

b

, which can be understood
in light of Fig. 11. The irregular shape of the confidence region for ⌦0

b

is a consequence of the flat prior imposed and the poor
constraining power of the data for this parameter.

Appendix B: Convergence of the MCMC chains; validation of the Fisher approximation

In this Appendix, we show the state of convergence of the MCMC chains and the agreement with the Fisher
approximation. Fig. 14 shows that Fisher and MCMC forecasts agree to better than 5% for all shear biases.

This good agreement is the result of two e↵ects. First, it indicates convergence of the MCMC chains, which is not
trivial given that we are jointly fitting 37 parameters. Second, it indicates that the posterior distribution for the shear
biases is close to Gaussian. This was not obvious a priori, and is in agreement with [86].

LSST multi-probe+CMB-S4 Lensing

This project is 
currently evolving into 

full LSST+CMB-S4 
forecasts 

(cosmology+inflation 
models)
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FIG. 15. Self-calibration of the shear biases from LSST and CMB S4 lensing. We marginalize over all the nuisance parameters,
relaxing completely the priors on shear biases. The red zones indicate the 68% and 95% confidence regions. The posterior
distributions are visually close to Gaussian, which explains the validity of the Fisher approximation shown in Fig. 14.

Calibrating galaxy shape measurements is a major 
systematics for LSST

• Usually calibration is 
achieved through costly 
simulations, which we hope 
are unbiased

• CMB data can be used to 
self-calibrate LSST shape 
measurements

• Independent consistency 
check or additional 
information

Use CMB information to offset one 
of the largest systematics in LSST



Allows for independent LSST shear calibration at level of LSST 
requirements in highest z-bins (hard to achieve otherwise)



Project 5: Test Accuracy in 
Numerical Simulations

Project in some shelf… might never 
see daylight…

Theory -> Sims



Numerical simulations have 
uncertainties

Joint data vector details 
(LSST Y1, 18000 deg^2) 

• WL Source Sample:  
• 5 tomographic bins [0:2.5]  
• 25 l-bins [30:5000] 
• n_gal=13 gal/arcmin^2 
• Clustering Lens Sample:  
• 4 tomographic bins [0:1.0] 
• 25 l-bins [30:5000] 
• red sequence sample 
• k_max cut-off, R=[2,5,10] 

Mpc/h to justify linear 
galaxy bias models 

• Galaxy galaxy lensing using 
lens and source sample

Matter Power Spectrum Error 
Models
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black: no error, Rmin=10 Mpc/h 
green: n=0.5, Rmin=10 Mpc/h 
blue: n=0.8, Rmin=10 Mpc/h 
red: n=1.0, Rmin=10 Mpc/h

LSST Y1



Conclusions

Exciting because of the enormous amount of cosmological 
data from a variety of surveys  

Complex because smart+precise multi-probe and multi-data 
set analyses are hard 

We need creative research on systematics mitigation, 
precise error calculation, model building, data inference 

Critical to interface expertise in simulations, observations, 
analytical modeling, statistical methods

Future of cosmology is very exciting 
and very complex


