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• BAO forecasts for DESI Lyα
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• Opportunities (neutrinos, running, warm dark matter)

• State of the art (one-dimensional power spectrum)
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The Lyman-α forest

Credits: Andrew Pontzen
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The Lyman-α forest

fq(�) = Cq(�)Fq(�)

� = �↵(1 + z)

Observed flux Transmitted fraction

Quasar continuum

Absorption redshift Observed wavelength

LyaF wavelength (121.6 nm)

�F (x) =
F (x)� F̄

F̄
Flux fluctuations in pixels trace the density 

along the line of sight to the quasar

N.G. Busca et al.: BAO in the Lyα forest of BOSS quasars

(section 4). This early freezing of procedures resulted in some
that are suboptimal but which will be improved in future analy-
ses. We note, however, that the procedures used to extract cos-
mological information (section 5) were decided on only after
de-masking the data.
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Fig. 3. An example of a BOSS quasar spectrum of redshift
3.239. The red and blue lines cover the forest region used here,
104.5 < λrf < 118.0. This region is sandwiched between the
quasar’s Lyβ and Lyα emission lines respectively at 435 and
515 nm. The blue line is an estimate of the continuum (unab-
sorbed flux) by method 2 and the red line is the estimate of the
product of the continuum and the mean absorption by method 1.

3.1. Continuum fits, method 1

Both methods for estimating the productCqF assume that Cq is,
to first approximation, proportional to a universal quasar spec-
trum that is a function of rest-frame wavelength, λrf = λ/(1+ zq)
(for quasar redshift zq), multiplied by a mean transmission frac-
tion that slowly varies with absorber redshift. Following this as-
sumption, the universal spectrum is found by stacking the ap-
propriately normalized spectra of quasars in our sample, thus
averaging out the fluctuating Lyα absorption. The product CqF
for individual quasars is then derived from the universal spec-
trum by normalizing it to account for the quasar’s mean forest
flux and then modifying its slope to account for spectral-index
diversity and/or photo-spectroscopic miscalibration.

Method 1 estimates directly the product CqF in equation 2.
An example is given by the red line in figure 3. The estimate is
made by modeling each spectrum as

CqF = aq
(

λ

⟨λ⟩

)bq
f (λrf , z) (6)

where aq is a normalization, bq a “deformation parameter”, and
⟨λ⟩ is the mean wavelength in the forest for the quasar q and
f (λrf , z) is the mean normalized flux obtained by stacking spectra
in bins of width ∆z = 0.1:

f (λrf , z) =
∑

q
wq fq(λ)/ f 128

q /
∑

q
wq . (7)

Here z is the redshift of the absorption line at observed wave-
length λ (z = λ/λLyα − 1), fq is the observed flux of quasar q

at wavelength λ and f 128
q is the average of the flux of quasar

q for 127.5 < λrf < 128.5 nm. The weight wq(λ) is given by
w−1
q = 1/[ivar(λ) · ( f 128

q )2] + σ2
f lux, LSS. The quantity ivar is the

pipeline estimate of the inverse flux variance in the pixel corre-
sponding to wavelength λ. The quantity σ2

f lux, LSS is the contri-
bution to the variance in the flux due to the LSS. We approxi-
mate it by its value at the typical redshift of the survey, z ∼ 2.3:
σ2
f lux, LSS ∼ 0.035 (section 3.3).

Figure 4 shows the resulting mean δi as a function of ob-
served wavelength. The mean fluctuates about zero with up to
2% deviations with correlated features that include the H and K
lines of singly ionised calcium (presumably originataing from
some combination of solar neighborhood, interstellar medium
and the Milky Way halo absorption) and features related to
Balmer lines. These Balmer features are a by-product of imper-
fect masking of Balmer absorption lines in F-star spectroscopic
standards, which are used to produce calibration vectors (in the
conversion of CCD counts to flux) for DR9 quasars. Therefore
such Balmer artifacts are constant for all fibers in a plate fed
to one of the two spectrographs and so they are approximately
constant for every ’half-plate’.

If unsubtracted, the artifacts in figure 4 would lead to spuri-
ous correlations, especially between pairs of pixels with separa-
tions that are purely transverse to the line of sight. We have made
a global correction by subtracting the quantity ⟨δ⟩(λ) in figure 4
(un-smoothed) from individual measurements of δ. This is justi-
fied if the variance of the artifacts from half-plate-to-half-plate is
sufficiently small, as half-plate-wide deviations from our global
correction could, in principle add spurious correlations.

We have investigated this variance both by measuring the
Balmer artifacts in the calibration vectors themselves and by
studying continuum regions of all available quasars in the DR9
sample. Both studies yield no detection of excess variance aris-
ing from these artifacts, but do provide upper limits. The study
of the calibration vectors indicate that the square-root of the vari-
ance is less than 20% of the mean Balmer artifact deviations and
the study of quasar spectra indicate that the square-root of the
variance is less than 100% of the mean Balmer artifacts (and
less than 50% of the mean calcium line deviations).

We then performed Monte Carlo simulations by adding a
random sampling of our measured artifacts to our data to con-
firm that our global correction is adequate. We found that there
is no significant effect on the determination of the BAO peak po-
sition, even if the variations are as large as that allowed in our
tests.

3.2. Continuum fits, method 2

Method 1 would be especially appropriate if the fluxes had a
Gaussian distribution about the mean absorbed flux, CqF. Since
this is not the case, we have developed method 2 which explicitly
uses the probability distribution function for the transmitted flux
fraction F, P(F, z), where 0 < F < 1. We use the P(F, z) that
results from the log-normal model used to generate mock data
(see appendix A).

Using P(F, z), we can construct for each BOSS quasar the
PDF of the flux in pixel i, fi, by assuming a continuum Cq(λi)
and convolving with the pixel noise, σi:

Pi( fi,Cq(λi), zi) ∝
∫ 1

0
dFP(F, zi) exp

⎡

⎢

⎢

⎢

⎢

⎣

−(CqF − fi)2

2σ2
i

⎤

⎥

⎥

⎥

⎥

⎦

. (8)
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1st step: from observed flux to cosmological fluctuations
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BOSS Lyman-α BAO
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Two independent ways of measuring the BAO scale

Bautista et al. (2017) du Mas des Bourboux (2017) —— DR12 ——
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H(z)
=

∆v

H(z)(1 + z)
(5.2)

1Å ∼ 70 km s−1 ∼ 0.7h−1 Mpc (5.3)

∆χ = dA(z)(1 + z)∆θ (5.4)

1 deg ∼ 70h−1 Mpc (5.5)

6 Conclusions

We detect cross-correlations on very large separations, well described by linear theory. Re-
sults consistent with quasar clustering ([12]) and Lyα clustering ([13]), we get even better
constraints on bias parameters.

Future studies will focus on radiation and small scales cross-correlations (proximity
effect).

Comment the strength of LyaF-QSO cross-correlations for cosmological studies.
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BOSS Lyman-α BAO

Two independent ways of measuring the BAO scale

Bautista et al. (2017) du Mas des Bourboux (2017) —— DR12 ——
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Dark Energy is now 
detected from 

BAO data alone  

In a flat ΛCDM model
BAO
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Combined BOSS BAO
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Mayall 4m Telescope
Kitt Peak (Tucson, AZ)

Readout  
& Control

• 5000 fibers in robotic actuators
• 10 fiber cable bundles
• 3.2 deg. field of view optics

• 10 spectrographs  

Dark Energy Spectroscopic Instrument

Scheduled to start in 2019

Increase BOSS dataset by an 
order of magnitude
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Small scale clustering

Lyman-α forest offers a 
unique window to study 

small scale clustering

Combined with CMB, it 
allows us to study:

• shape of primordial P(k)
• dark matter properties
• neutrino mass

La
te

 t
im

e
Ea

rl
y 

tim
e

Small scalesLarge scales

CMB

Lyman-α Forest

Weak 
Lensing

Spectroscopic
Galaxies

Photometric
Galaxies

CMB 
Lensing

0 
   

   
   

   
   

1 
   

   
   

  2
   

 R
ed

sh
ift

   
   

5 
   

   
   

   
11

00

  1000           100      Mpc       10                 1              

Future 21cm



Oxford, April 19th 2018Andreu Font-Ribera - Statistical challenges with the Lyman-⍺ forest 18
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Estimators: 1D P(k)

1D correlations, one skewer at a time (Palanque-Delabrouille et al. 2013)

Line of sight (1D) wavenumber ~ 2 h/Mpc~ 0.1 h/Mpc
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Estimators: 3D P(k)

• Good to have an alternative way to study BAO

• Constraint cosmology from the Lyα clustering, beyond BAO 
(DESI Lyα forecasts dominated by P3D, not P1D)

Motivation

However, current 3D studies in BOSS/eBOSS only try to measure BAO

1D analyses have used both FFT / Pseudo-Cl and Maximum Likelihood
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Estimators: 3D P(k)

Likelihood-based

3

C. Observable-only likelihood function

Generally we don’t actually care about reconstructing the underlying field, so we marginalize over ✏̃. The way Eq.
6 is written, this is trivial and we find the expected:

L(o|p) / det (C)�1/2 exp
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�
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where, again, C = RSR

t +N, where S is the covariance of the underlying field �.

II. APPROXIMATING THE LIKELIHOOD FUNCTION BY AN EXPANSION IN THE MODEL
PARAMETERS

In this section we discuss how to compress the likelihood function by Taylor expanding in the parameters of interest.

A. General Taylor expansion of log likelihood

We would like to compress the likelihood function by carrying out sums over the data to produce a simple, fact to
evaluate, function of the parameters of interest. This generally cannot be exact – the exact expression is the one one
obtains by summing over the data for each parameter value. The standard procedure starts by Taylor expanding the
likelihood function in terms of the parameters, around some starting guess at the parameters, p
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. Note that, while it is not the standard approach, if we are confident we have a good position p
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are computable from the
data and there is no need to find a precise minimum (e.g., generally the parameter values obtained in a subsequent
joint fit including other data will be a better choice for p

0

than the ones that minimize this likelihood function taken
in isolation, i.e., we want to expand around the point where we will use this approximation for the likelihood function,
not necessarily the maximum likelihood point). This is actually a main point of the paper, but for now we will go on
with the standard approach.

This function generally has a maximum, found by solving
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This process can be iterated to convergence, i.e., one re-expands around the approximate maximum likelihood point
until the change �p is su�ciently small.

B. Power spectrum/correlation function parameters only

For clarity, and comparison with most literature, we derive these expansions more explicitely for the case where
only the signal covariance matrix S depends on parameters.

For a likelihood function of the type
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B. Power spectrum/correlation function parameters only
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C. Observable-only likelihood function

Generally we don’t actually care about reconstructing the underlying field, so we marginalize over ✏̃. The way Eq.
6 is written, this is trivial and we find the expected:
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where, again, C = RSR

t +N, where S is the covariance of the underlying field �.
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Derivative of C�1 can be found by taking derivative of CC

�1 = I. Derivative of the determinant is obtained by using
identity ln detC = Tr lnC (note sign error in Eq. 15 of [1]). The 2nd derivatives are
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If C is actually linearly dependent on the parameters, as it is if the parameters are band power amplitudes (or band
correlation values), i.e., C ⌘ N+ S
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and n-th derivative is simply given by
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[PM: Is it really unnecessary to consider the order of parameter indices in the higher order terms?]

1. Standard quadratic estimator

The standard “quadratic estimator” for the power spectrum, makes an additional assumption, that the quadratic
term can be replaced by it’s expectation value. The expectation value of L

,ij

is the Fisher matrix:
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Note that this can be derived directly from Eq. 12, which does not assume 2nd derivatives of S are zero. The 2nd
derivative terms simply cancel when we take the expectation value, i.e., this formula for the Fisher matrix is correct
for ageneral parameterization of S, not just band powers.

The equivalent expression for higher derivatives is [AS: Check!]
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One can also calculate the variance of L
,ij

(by noting that second term in Eq (13) is a constant and that Wick’s
expansion of the first term squared gives the usual 1 separable and two equal and unseparable terms):
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The standard quadratic estimator is derived by replacing L

,ij

in Eq. 9 with it’s average value, �F
ij

. Then the

iterated estimate ✓̂ is
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where ✓0
k

is our first guess for the estimator. In the second we used C

�1

S � I = C

�1

N. Of course, we need to keep
in mind that this applies only to the specific model C ⌘ N+ S

,i
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.
We see now that, while the central values found by the standard quadratic estimator equal to the maximum

likelihood point, and equal to hpi given a quadratic expansion of the likelihood function like Eq. 7, the inverse of
the Fisher matrix is not actually equal to the variance of the parameters one computes from the expansion of the
likelihood, which is h(p

i

� hp
i

i)(p
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i)ti = L
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.

2. Parameters beyond the power spectrum

We rewrite equation (6) as

L(o|p) / det (C)�1/2 exp
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, (19)

Optimal Quadratic Estimator

• Can’t evaluate by brute force (roughly a billion correlated pixels)
• We need to make controlled approximations for speed

• Assume uncorrelated skewers (block-diagonal covariance)
• Rotate data into eigenvectors of response matrices
• Use special parameterization, change variables later



Oxford, April 19th 2018Andreu Font-Ribera - Statistical challenges with the Lyman-⍺ forest 25

Estimators: 3D P(k)

• Off-diagonal covariance

• low-k line of sight modes 
(continuum errors) 
spread over all scales

• Funky window function 
in transverse direction

• Non-stationary field           
(z-evolution)

Configuration or Fourier space? 

Cross-spectrum (hybrid) 

1D power is just one of the bins of the cross-spectrum with
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Measurement from 40 mock realizations of BOSS

Estimators: 3D P(k)

JCAP (2018)
1710.11036v2 
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Summary

BAO in the Lyα forest

• 2% measurement at z~2.3 (quasars and the Lyman-α forest)

• BOSS Ly-α showed the forest is ready for precision cosmology

• DESI will represent an order of magnitude jump in precision

Small scale clustering of the Lyα forest

• Ly-α offers a unique window to small scales

• Strong constraints on warm dark matter, neutrinos or running

• Several statistical and computational challenges

• Many interesting projects, very few people working on it!
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BAO and the H0 tension

Riess et al. (2016)

Addison et al. (2017)

Planck + LCDM predicts value of 
H0 lower than that from local 
expansion (Riess et al. 2016)

BAO + LCDM constraint 
Ωm and H0 rs

(sound horizon, size of ruler)

With BBN prior on Ωb we 
can break degeneracy and 

measure H0 from BAO
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Snowmass report (2014)

Massive neutrinos are 
hot dark matter, do not 
cluster on small scales

Comparing the power 
on large and small scales 

we can constraint 
neutrino masses

Best constraints from 
Planck + BOSS Lyα
Σmν < 0.12 eV (95%)

(Palanque-Delabrouille++ 2015)

Small scale clustering


