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WHAT ARE THE STATISTICAL CHALLENGES WITH LSST?

» Bayesian: we want the posterior: p(0 | d)

» O = cosmological parameters, d = data

» Bayes: p(@|d) o p(d|O) p(O)

» Likelihood: p(d | ©)

» d? Typically summary statistics such as correlation
function or power spectrum estimates. Already a massive
data compression. Perhaps 102-104 summary statistics
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TYPICAL APPROACH

GAUSSIAN LIKELIHOOD APPROXIMATION

» Often, we assume that the summary statistics are gaussian-
distributed

» (Handwave, handwave, central limit theorem...)

» We rarely stop to question this, but we should. Let us run
with it for now




GAUSSIAN LIKELIHOODS

REQUIREMENTS FOR GAUSSIAN LIKELIHOODS

» Data normally distributed: d ~ Ng(u1,2)
1

p(d|o) = 275~ exp |~ (d — p)TBTHd - p)

» In general, both g and the covariance matrix 2 depend on
cosmological parameters

» i would come from theory or simulation.

» Problem is 2.




COVARIANCE MATRIX

» If summary statistics are 2-point functions, 2 is a 4-point
function. Hard to compute for non-gaussian fields.

» Either use analytic covariance matrix, or simulate (or both)

» For simulated covariance matrices, 2. can be unbiased. Note
that some effects are not included - e.g. super-sample
covariance.

» However, 2_1 is not unbiased. A fix is the Hartlap et al (2007)
correction (N-1)/(N-p-2). p = number of data; N = no. of sims.

» Marginalise over 2 — likelihood of Sellentin & Heavens (2016)

» Further discussion: e.g. Friedrich & Eifler (2016), Joachimi Elena Sellentin
(2017)
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SIMULATIONS

CHALLENGE: NUMBER OF SIMULATIONS REQUIRED, N

» Need N>p+2, where p = number of summary statistics
» p could easily be 104 for LSST

» If 2 varies with cosmological parameters (as it will), then
it's worse. Estimating 2 would be prohibitively expensive

» Solution: reduce p. Data compression
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MOPED ALGORITHM

» Massively Optimised Parameter Estimation
and Data compression (Heavens, Jimenez,

Lahav 2000)

» Variation by Zablocki & Dodelson (2016).
Generalised by Alsing & Wandelt (2018).
See also Charnock et al (2018)

» Yo = ba.X
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DATA COMPRESSION

MOPED ALGORITHM

» Massively Optimised Parameter Estimation
and Data compression (Heavens, Jimenez,

Lahav 2000)

» Variation by Zablocki & Dodelson (2016).
Generalised by Alsing & Wandelt (2018).
See also Charnock et al (2018)

| < @ < m,

» Yo = ba.X

» Size of dataset reduced to the number of
parameters. Same Fisher Matrix.

» MOPED proposed to solve the simulations
problem by Heavens et al (2017) and
Gualdi et al (2018).
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Estimating CY at: emulator locations; each MCMC point.

No compression 100 107

MOPED compression, using simulated C* 104 106

MOPED compression, using analytic/theoretical CX 103 100
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ANALYTIC APPROACHES

NON-GAUSSIAN LIKELIHOODS |

» From a Bayesian perspective, we want the full likelihood (sampling
distribution) e.g. p(all Fourier Coefficients | parameters)

» Challenging: few tools. e.g. Edgeworth expansion

» Schematically
ax |
2P (k)

p(ax|0) = |diag[2n P(k)]|~1/% exp {— } {1+ B(0)+T(0)+B*0)+...}

» B = bispectrum, T = trispectrum

» Gaussianising transforms? Alex (Hall and Mead)

» Large-deviation theory? (Sandrine Codis’ talk)

Sellentin, Jaffe & Heavens 2018




APPROXIMATING THE LIKELIHOOD FUNCTION

NG LIKELIHOODS II: FIT THE LIKELIHOOD FUNCTION NUMERICALLY

» Run many simulations; fit the sampling distribution of
mocks

» e.g. Hahn et al (2018)
» Feasible in relatively small numbers of dimensions
» Probably impossible in very high dimensions

» Data compression needed again
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NG LIKELIHOODS Iil: LIKELIHOOD-FREE INFERENCE

» Try to get p(0 | d) directly. E.g.
simulate with many different
cosmological parameter sets,
and keep those that match the
data

» Naively, very inefficient

» ‘Match’: not everything, but
match some summary statistics

» Try to approximate joint p(© , d)
(Alsing et al 2018)

Justin Alsing
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MORE AMBITION

BAYESIAN HIERARCHICAL MODELS

» This is the way to do it, if we can. Can add in many

systematic effects, e.g. redshift distributions (Leistedt,
Mortlock, Peiris 2016. See Boris’ talk; also Alex Malz)

» Mask is easy to include (infinite variance pixels)

» Introduce latent variables e.g. the true map s:

p(d]8) = / p(d,s/8)ds = / p(dls, 8) p(s|6)ds

Jointly sample 6 and s. It is a very high
dimensional space ~10¢. Use HMC or Gibbs
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The Forward Process.
Galaxies: Intrinsic galaxy shapes to measured image:

Intrinsic galaxy Gra vitational lensing  Atmos ph d I p D
(shape unknown) shea lgl

galaxy
characteristics

PSF, instrumental noise cosmology

parameters
characterizing
distributions

physical
quantities

Morrison et al

products




COMPUTATIONAL CHALLENGES

FEASIBILITY OF COSMIC SHEAR BHM

» Relatively simple BHMs with existing data can be analysed in
~1 day

» Scaling N log N (FFT), N3/2 (Spherical harmonics); N =
number of pixels

» Possible for LSST analysis

» Ideally sample from initial density field and evolve with 2LPT
or ICE-COLA, for example

» Timescales then similar to galaxy clustering Bayesian analysis




CONCLUSIONS

» For gaussian distributed data, estimation of the covariance matrix
will require data compression to avoid unfeasibly many simulations

» Assuming that data are gaussian-distributed will almost certainly
not be good enough

» For likelihood-free parameter inference, or for approximating

sampling distributions, massive data compression will also be
necessary

» MOPED offers a way to do this without loss of information

» Bayesian Hierarchical Modelling is the principled solution to the
analysis challenge




