

Cosmic Calibration

Katrin Heitmann Statistical Challenges for Large-Scale Structure in the Era of LSST Oxford , April 18, 2018

http://www.hep.anl.gov/cosmology/CosmicEmu/emu.html

Thanks to many collaborators!

• The Beginnings -- Proof of Concept (Heitmann et al. 2006, Habib et al. 2007)

• The Coyote Universe + Extension

(Heitmann et al. 2009, 2010, 2013, Lawrence et al. 2010)

• Emulators beyond P(k) (Kwan et al. 2013a,b)

• The Mira-Titan Universe

(Heitmann et al. 2015, Lawrence et al. 2017, Kwan et al., Bocquet et al in prep.)

ators!

e Beginnings -- Proof of Concept

eitmann et al. 2006, Habib et al. 2007)

e Coyote Universe + Extension

eitmann et al. 2009, 2010, 2013, wrence et al. 2010)

ulators beyond P(k)

an et al. 2013a,b)

Mira-Titan Universe

itmann et al. 2015, Lawrence et al. 7, Kwan et al., Bocquet et al in prep.)

Thanks to many collaborators!

• The Beginnings -- Proof of Concept (Heitmann et al. 2006, Habib et al. 2007)

• The Coyote Universe + Extension

(Heitmann et al. 2009, 2010, 2013, Lawrence et al. 2010)

• Emulators beyond P(k) (Kwan et al. 2013a,b)

• The Mira-Titan Universe

(Heitmann et al. 2015, Lawrence et al. 2017, Kwan et al., Bocquet et al in prep.)

Cosmic Calibration: Solving the Inverse Problem

- **Challenge:** To extract cosmological constraints from observations in nonlinear regime, need to run Marko Chain Monte Carlo code; input: 10,000 100,000 different models
- Direct simulations: Cost estimate
 - HACC on Titan (fastest system in the US, 5th in the world)
 - 10 simulations fit on full machine, 24 hours per simulation
 - For 100,000 simulations this translates to ~30 years
- **Current strategy:** Fitting functions for e.g. P(k), accurate at 10% level, this is not good enough!
- Our alternative: Emulators, fast prediction schemes built from a manageable set of simulations
- "Ingredients": Optimal sampling methods to decide which models to simulate, efficient representation of simulation outcome, powerful interpolation scheme
- Example here: Power spectrum emulator

Cosmic Calibration Framework

- Step 1: Design simulation campaign, rule of thumb: O(10) models for each parameter
- Step 2: Carry out simulation campaign and extract quantity of interest, in our case, power spectrum
- Step 3: Choose suitable interpolation scheme to interpolate between models, here Gaussian Processes
- Step 4: Build emulator
- Step 5: Use emulator to analyze data, determine model inadequacy, refine simulation and modeling strategy...

The Coyote Simulation Design for wCDM Cosmologies

The (original) Coyote Universe

• Observational considerations

- CMB provides very accurate measurements of "vanilla parameters"
- In particular, ω_b , ω_m , n_s known at the 2-3% level
- w, σ_8 less well known
- For good emulator performance from very small number of runs
 - Not too broad priors
 - Not too many parameters

The Coyote Universe

37 model runs + ΛCDM

- 16 low resolution realizations (green)
- 4 medium resolution realizations (red)
- 1 high resolution realization (blue)
- 11 outputs per run between z = 0 3

Restricted priors to minimize necessary number of runs

• 1.3 Gpc boxes, $m_P \sim 10^{11} M_{\odot}$ ~1000 simulations, 60TB

Next step: Smooth Power Spectrum

- Each simulation represents one possible realization of the Universe in a finite volume
- Need smooth prediction for building the emulator for each model
- Major challenge: Make sure that baryon features are not washed out or enhanced due to realization scatter
 - Construct smooth power spectra using a process convolution model (Higdon 2002)
 - Basic idea: calculate moving average using a kernel whose width is allowed to change to account for non-stationarity

M001

Next step: Smooth Power Spectrum

- Each simulation represents one possible realization of the Universe in a finite volume
- Need smooth prediction for building the emulator for each model
- Major challenge: Make sure that baryon features are not washed out or enhanced due to realization scatter
 - Construct smooth power spectra using a process convolution model (Higdon 2002)
 - Basic idea: calculate moving average using a kernel whose width is allowed to change to account for non-stationarity

The Interpolation Scheme: Gaussian Processing

- After simulation design specification: Build interpolation scheme that yields predictions for any cosmology within the priors
- Model simulation outputs using a p_{η} dimensional basis representation
 - Find suitable set of orthogonal basis vectors $\phi_i(k,z)$, here: Principal Component Analysis
 - 5 PC bases needed, fifth PC basis pretty flat
 - Next step: modeling the weights
 - Here: Gaussian Process modeling (non-parametric regression approach, local interpolator; specified by mean function and covariance function)

The Cosmic Emu(lator)

- Prediction tool for matter power spectrum has been constructed
- Accuracy within specified priors between z=0 and z=1 out to k=1 h/ Mpc at the 1% level achieved
- Emulator has been publicly released, C code (Lawrence et al., 2010)
- Extension: Includes a additional parameter, covers smaller scales and earlier times (Heitmann et al., 2014)
 - Nested simulations to cover large k-range
 - ► Approach degrades accuracy to ~3%

Emulator performance: Comparison of prediction and simulation output for a model not used to build emulator at 6 redshifts.

The Cosmic Emu(lator)

- Prediction tool for matter power spectrum has been constructed
- Accuracy within specified priors between z=0 and z=1 out to k=1 h/ Mpc at the 1% level achieved
- Emulator has been publicly released, C code (Lawrence et al., 2010)
- Extension: Includes a additional parameter, covers smaller scales and earlier times (Heitmann et al., 2014)
 - Nested simulations to cover large k-range
 - Approach degrades accuracy to ~3%

Emulator performance: Comparison of prediction and simulation output for a model not used to build emulator at 6 redshifts.

The FrankenEmu Challenge

FrankenEmu Results

FrankenEmu Concentration Emulator

- Nested simulation provide high mass resolution and allow us to measure halo concentration for small halo masses
- Due to large variance in concentration measures, accuracy requirements are not as daunting
- Emulator for z-range 0-1, concetration variation between c~2 to c~8

0-15+7053/0-15+7058/0-15+7058/0-15+7056/0-15+7057/0-15+7057/0-15+7055/0-15+8302/0-15+8302/0-15+8302/0-15+8589/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+8592/0-15+9839/0-15+9889/0-15+9889/0-15+9889/0-15+9889/0-15+8589/0-15+8589/0-15+8592/0-15+9892/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+9982/0-15+8542/0-15+8553/0-15+8555/0-15+8

/ 0-15+8459/0-15+8456/0-15+8457/0-15+8535/0-15+8535/0-15+8366 0-12 68 67 (15 68) 2 (15

-15+6985/0-15+6406/0-15+6407/0-15+6404/0-15+6405/0-15+6320/0-15+6320/0-15+63207/0-15+630670-15+640670-15+645070-15+645070-15+640670-15+6

2/0-15+8523/0-15+8521/0-15+8470/0-15+8471/0-15+9960/0-15+9961/0-15+9908/0-15+9909/0-15+9912/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+9958/0-15+8516/0-15+8516/0-15+8516/0-15+8474/0-15+8474/0-15+8472/0-15+8473/0-15+8473/0-15+8518/0-

Aph: titan-ext4:/lustre/atlas2/hep100/current/TitanU/Grid/M038/L2100/HACC000/run/run003/hacc_gpu_m038.err out_Path: titan-ext4:/lustre/atlas2/hep100/current/TitanU/Grid/M038/L2100/HACC000/run/run003/hacc_gpu_m038.log

Emulating the Galaxy Power Spectrum

- First paper: Keep cosmology fixed and only vary 5 HOD parameters
- Emulators for: Galaxy-galaxy auto, galaxy-dark matter cross power spectra and correlation function based on 100 HOD models
- Accuracy: 1-2% between z=0 and z=1 out to k=1/Mpc
- Currently in preparation: Currently extended emulators to take into account cosmology dependence

$$N_{\rm cen}(M) = \frac{1}{2} \operatorname{erfc} \left[\frac{\ln(M_{\rm cut}/M)}{\sqrt{2\sigma}} \right]$$
$$N_{\rm sat}(M) = \left(\frac{M - \kappa M_{\rm cut}}{M_1} \right)^{\alpha}$$

Kwan et al. 2015

The Mira-Titan Universe: Power Spectrum

Lawrence et al. 2017

Comparison with Other Methods

Lawrence et al. 2017

Simulating the universe so you don't have tol

Mira/Titan Universe Simulation

text describing this simulation

OuterRim Simulation

text describing this simulation

Frequently Asked Questions

more text

LEARN MORE \rightarrow

HEITMANN@GLOBUSID.ORG

LOGOUT

in collaboration with Tom Uram

HACC Simulation Data Portal

HACC Simulation Data Portal

Repository

Select dataset(s) to transfer

							Search:		
÷	Name 🔺	omega_cdm 🕴	deut 🕴	omega_nu 🕴	hubble 🕴	ss8 ♦	ns 🕴	w_de 🔅	wa_de 🕴
	M000	0.22	0.02258	0.0	0.71	0.8	0.963	-1.0	0.0
	M001	0.3276	0.02261	0.0	0.6167	0.8778	0.9611	-0.7	0.6722
	M002	0.1997	0.02328	0.0	0.75	0.8556	1.05	-1.033	0.9111
	M003	0.259	0.02194	0.0	0.7167	0.9	0.8944	-1.1	-0.2833
	M004	0.2971	0.02283	0.0	0.5833	0.7889	0.8722	-1.167	1.15
	M005	0.1658	0.0235	0.0	0.85	0.7667	0.9833	-1.233	-0.04445
	M006	0.3643	0.0215	0.0	0.55	0.8333	0.9167	-0.7667	0.1944
	M007	0.19329867	0.02217	0.0	0.8167	0.8111	1.028	-0.8333	-1.0
	M008	0.207625252	0.02306	0.0	0.6833	0.7	1.006	-0.9	0.4333
	M009	0.278532533	0.02172	0.0	0.65	0.7444	0.85	-0.9667	-0.7611
	M010	0.17180095	0.02239	0.0	0.7833	0.7222	0.9389	-1.3	-0.5222

Showing 1 to 11 of 11 entries

□Include Halo particles

□Include BIG Halo particles

Include Simulation particles

□Include Halo properties

LOGOUT | HEITMANN@GLOBUSID.ORG

Repository

Select dataset(s) to transfer

							Search:		
÷	Name 🔺	omega_cdm 🕴	deut 🕴	omega_nu 🕴	hubble 🕴	ss8 \$	ns 🕴	w_de 🕴	wa_de 🕴
	M000	0.22	0.02258	0.0	0.71	0.8	0.963	-1.0	0.0
	M001	0.3276	0.02261	0.0	0.6167	0.8778	0.9611	-0.7	0.6722
	M002	0.1997	0.02328	0.0	0.75	0.8556	1.05	-1.033	0.9111
	M003	0.259	0.02194	0.0	0.7167	0.9	0.8944	-1.1	-0.2833
	M004	0.2971	0.02283	0.0	0.5833	0.7889	0.8722	-1.167	1.15
	M005	0.1658	0.0235	0.0	0.85	0.7667	0.9833	-1.233	-0.04445
	M006	0.3643	0.0215	0.0	0.55	0.8333	0.9167	-0.7667	0.1944
	M007	0.19329867	0.02217	0.0	0.8167	0.8111	1.028	-0.8333	-1.0
	M008	0.207625252	0.02306	0.0	0.6833	0.7	1.006	-0.9	0.4333
	M009	0.278532533	0.02172	0.0	0.65	0.7444	0.85	-0.9667	-0.7611
	M010	0.17180095	0.02239	0.0	0.7833	0.7222	0.9389	-1.3	-0.5222

Showing 1 to 11 of 11 entries 1 row selected

□Include Halo particles

□Include BIG Halo particles

Include Simulation particles

□Include Halo properties

Transfer

HACC Simulation Data Portal

یں واد	bus	Manage Data 🔹 Publi	sh Groups -	Support -	Account	
Browse	Endpoint					
	Endpoint Start here Path		Go			
	Start by se	electing an endpoint.				
Label This	Transfer This will be displayed in your transfer activity.					
		Submit				

© 2010–2018 The University of Chicago legal

Future Work and Open Questions

- More Emulators: Mass function, galaxy power spectrum and correlation function across cosmologies (real and redshift space), dark matter halo bias, ...
- **Discrepancy Modeling:** What happens if our forward model isn't correct?
- Nested/Adaptive Sampling: Convergent/Learning approach to emulation
- Covariance Emulation: Emulate covariances rather than just the mean (observations are only for one realization!)
- Accuracy Limits: Theory for convergence (a posteriori so far)
- Limits of Dimensionality: How high can we go?
- Cross-Correlations: Optical X CMB, lensing X galaxy distribution, etc.
- Galaxy Catalogs: Emulation of statistics from galaxy formation models

Key References

• General Method:

- K. Heitmann, D. Higdon, C. Nakhleh, and S. Habib, ApJ Lett 646, 1 (2006) [short]
- S. Habib, K. Heitmann, D. Higdon, C. Nakhleh, and B. Williams, Phys. Rev. D **76**, 083503 (2007) [technical]
- D. Higdon, K. Heitmann, C. Nakhleh, and S. Habib, in the Oxford Handbook of Applied Bayesian Analysis edited by O' Hagan and West (Oxford, 2010) [review with a worked out inverse problem]
- K. Heitmann, D. Bingham, E. Lawrence, S. Bergner, S. Habib, D. Higdon, A. Pope, R. Biswas, H. Finkel, N. Frontiere, and S. Bhattacharya, ApJ **820**, 108 (2016) [nested sampling, strong convergence]
- Power Spectra:
 - K. Heitmann, M. White, C. Wagner, S. Habib, and D. Higdon, ApJ 715, 104 (2010) [Coyote Universe I];
 K. Heitmann, D. Higdon, M. White, S. Habib, B.J. Williams, and C. Wagner, ApJ 705, 156 (2009)
 [Coyote Universe II]; E. Lawrence, K. Heitmann, M. White, D. Higdon, C. Wagner, S. Habib, and B.
 Williams, ApJ 713, 1322 (2010) [Coyote Universe III]; K. Heitmann, E. Lawrence, J. Kwan, S. Habib, and D. Higdon, ApJ 780, 111 (2014) [Coyote Universe IV]
 - J. Kwan, K. Heitmann, S. Habib, N. Padmanabhan, E. Lawrence, H. Finkel, N. Frontiere, and A. Pope, Phys. Rev. D 810, 35 (2015) [galaxy power spectrum]
 - E. Lawrence, K. Heitmann, J. Kwan, A. Upadhye, D. Bingham, S. Habib, D. Higdon, A. Pope, H. Finkel, and Nicholas Frontiere, ApJ 847, 50 (2017) [Mira-Titan Universe II];
- Other Examples:
 - J. Kwan, S. Bhattacharya, K. Heitmann, and S. Habib, ApJ **768**, 123 (2013) [Halo shape emulation]
 - T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib, and D. Higdon, Phys. Rev. Lett. **105**, 241302 (2010) [Sn constraints on w(z) using GPs]
 - T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib, and D. Higdon, Phys. Rev. D 84, 083501 (2011) [combining data sets]