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LSST and future surveys will provide data that are wider 
and deeper.

Simulation and analytical models are becoming ever 
sharper, reflecting more detailed understanding of physical 
processes.

No doubt, statistical methods will play a key role in 
enabling scientific discoveries. But the question is: 

What do current statistical learning methods do well 
and where do they fail? 

What Do Current Stats/ML Methods 
Do Well and Where Do They Fail?

Thursday, April 19, 18



Prediction (classification and regression) 

What Current Statistics and Machine 
Learning Methods Do well...

x=

Many ML algorithms scale well to massive data sets and 
can handle different types of (high-dimensional) data x.
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Modeling uncertainty beyond prediction (point estimate 
+/- standard error). Assessing models beyond prediction 
performance.

Our objective: To develop new statistical tools that are

1. fully nonparametric 

2. can handle complex data objects x without resorting to a 
few summary statistics

3. estimate and assess the quality of entire probability 
distributions

What Current Statistics and Machine 
Learning Methods Don’t Do Very Well...
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1. Photo-z estimation: Estimate p(z|x) given photometric 
data x from individual galaxies

2.Nonparametric likelihood computation: Estimate posterior 
f(θ|x) using observed and simulated data, where          
θ=parameters of interest                                         
x=high-dim data (entire image, correlation functions, etc.)

Next: Two Examples of Nonparametric 
Conditional Density Estimation (“CDE”)
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I: Photo-z Density Estimation

z = “true” redshift (spectroscopically confirmed)

x = photometric colors and magnitudes of individual galaxy 

Because of degeneracies, need to estimate the full conditional 
density p(z|x) instead of just the conditional mean r(x)=E[Z|x].

Conditional density: f (z |x)
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f (z |x) for eight galaxies of Sloan Digital Sky Survey (SDSS).

6 / 35Photometry Estimates of p(z|x) from photometry

D = {(X1, Z1), . . . , (Xn, Zn), Xn+1, . . . , Xn+m},
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Can We Leverage the Advantages of Training-Based 
Regression Methods for Nonparametric CDE?

Basic idea of “FlexCode” [Izbicki & Lee, 2017]: Expand the 
unknown p(z|x) in a suitable orthonormal basis {φi(z)}i

By the orthogonality property, the expansion coefficients are 
just conditional means (which can be estimated by regression)

1. FlexCode converts a difficult non-parametric CDE problem 
into a better understood regression problem.

2. We choose tuning parameters in a principled way by 
minimizing a “CDE loss” on a validation set.
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Use Cross-Validation with a CDE Loss for Model 
Selection and Method Comparison

For model selection and comparison of p(z|x) estimates, we 
define a conditional density estimation (CDE) loss:

This loss is the CDE equivalent of the MSE in regression

Note: We can estimate the CDE loss (up to a constant) on 
test data without knowledge of the true densities.
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We entered “FlexZBoost” into the LSST-DESC Data Challenge 1 
(Buzzard v1.0 simulations with 0<z<2 and i<25, complete and 
representative training data and templates) 

“FlexZBoost” is a version of FlexCode that uses a Fourier basis 
for the basis expansion, and xgboost for regression (which 
scales to billions of examples)
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DC 1: Side-by-Side Tests of 11 Photo-z Codes (3 
Template-Based, 8 Training-Based)

QQ Plots Stacked p(z) compared to true n(z) 

“FlexZBoost” shows one of the best performances in estimating 
both p(z) and n(z) for DC1 data with no tuning other than CV. In 
addition: Scales to massive data (billions of galaxies); can store p(z) 
estimates at any resolution losslessly with 35 Fourier coeffs/galaxy. 
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II. A New CDE Approach to Fast Nonparametric 
Likelihood Computation

Fig: LSST will greatly increase 
the cosmological constraining 
power compared to current 
state of the art

Standard Gaussian likelihood models may become questionable 
at LSST precision. (Several works explore non-Gaussian 
alternatives and “varying covariance” models, e.g. Eifler et al)

How about fully nonparametric methods? Could e.g ABC and 
likelihood-free methods be made practical for LSST science? 
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Approximate Bayesian Computation (ABC) Driven 
By Repeated Simulations From a Forward Model
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Several Outstanding Issues with ABC

1. ABC requires repeated forward simulations (which 
may not be computationally feasible)

2.need to choose approximately sufficient summary 
statistics of the data 

3.not clear how to assess the performance of ABC 
methods without knowing the true posterior
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We propose ABC-CDE [Izbicki, Lee and Taylor 2018]: 
Combines ABC with CDE Training-Based Method 

Idea: Take the output from ABC (at a high acceptance rate)

1. Can adapt CDE method to different types of high-dimensional 
data (entire images, correlation functions, etc.). Dimension 
reduction is implicit in the choice of CDE method.

2. Can use our “CDE loss” to choose which model is closest to the 
truth --- even without knowing the true posterior.

and then directly estimate the posterior π(θ|x0) at observed 
data x0 using a CDE training-based method
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Example: Nonparametric Likelihood Computation
with Entire Images (No Summary Statistics; No ABC)

Fig: Galaxy images generated by GalSim (blurring, pixelation, noise) 

θ=(rotation angle, axis ratio)
x: entire image

Use a uniform prior and forward model, to simulate a sample 
(θ1, x1),..., (θB, xB) 

Estimate the likelihood L(θ) ∝ f(x|θ) directly via CDE. No 
summary statistics (entire images); no MCMC or ABC iterations

Thursday, April 19, 18



Even Decent Performance With Uniform Prior and 
Without ABC Iterations and Summary Statistics

Unknown parameters: rotation angle α, axis ratio ρ

Contours of the estimated likelihood for different CDE methods

The spectral 
series estimator 

(bottom left)
comes close to 

the true 
distribution

(top)

Thursday, April 19, 18



Toy Example of Cosmological Parameter Inference 
for Weak Lensing Mock Data via ABC-CDE.

Use GalSim to generate a cosmic shear grid realization with 
shape noise. Input two-point correlation functions to ABC.

Fig: Estimated posteriors 
of ΩM  and σ8 for ABC (top 
row) and two ABC-CDE 
methods (middle and 
bottom rows).

ABC-CDE posteriors 
concentrate around the 
degeneracy line at higher 
acceptance rates; that is, 
with fewer simulations.
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Toy Example with 1D Normal Posterior:
Estimated CDE Loss Tells Us Which Method is Best.

Bottom right: CDE loss estimated from data for three different 
methods (at varying acceptance rates). By comparing these values 
we can tell which estimate is closest to the true posterior.

Thursday, April 19, 18



Summary: Nonparametric CDE 
Approach to Inference

We are developing fast nonparametric CDE tools 
that go beyond prediction and estimate entire 
posteriors and likelihoods from observed and 
simulated data

1. potentially explore different types of high-
dimensional data

2. principled method of comparing estimates without 
knowing the true posterior

Please contact me for questions: annlee@cmu.edu
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EXTRA SLIDES START 
HERE
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ABC applied to SNe data; see Weyant/Schafer/Wood-Vasey (ApJ 2013)
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