Hierarchical modeling and statistical calibration for photometric redshifts

Context and motivation Standard methods and challenges New method applied to DES SV data

Boris Leistedt — @ixkael, www.ixkael.com NASA Einstein Fellow, New York University

work with D. Hogg (NYU), R. Wechsler, J. De Rose (Stanford)

<u>This work</u>: hierarchical SED modeling for both precise & accurate photometric redshifts (applied to public DES SV data)

Photometric redshift

= estimating redshift from noisy broadband photometry

using knowledge of galaxy SEDs, redshift, bandpasses, etc OR seing it as redshift=f(fluxes) regression problem.

This is an animation - sorry if you're watching this in PDF

Context and motivation

- DES and LSST see 10^{7-9} galaxies to z=1-2
- Cosmological requirements: exquisite precision needed on N(z) for galaxy clustering + cosmic shear constraints
- Complicated data: 5 band photometry, selection effects, biases.
 Manageable impact on single galaxies. Huge impact on N(z)'s.
 Example: poorly estimated but significant probability at high-z.
- We will *never* have representative spectroscopic training data.
- Accuracy requirements not met. Validation is difficult.

The Right Way To Do It[™]

Simultaneously optimize/infer a photo-z model on all of our data

Data (possibly split in training/validation):

- Target 4-5-band photometric survey (e.g., DES, KIDS)
- Some spectroscopy, some extra photometric bands

Model:

- Observations: bandpasses, noise levels, detection criteria
- <u>Physics</u>: galaxy SEDs, relative abundances, redshift distributions possibly from stellar population models, luminosity function, etc

Objective function: full posterior distribution

Never done but now possible with new methods/technology

Three classes of methods

template fitting

Fitting SEDs to photometry using **likelihood function** p(fluxes | noise, SED(z, t, I) model) Requires calibrated SEDs/priors & unbiased data

machine learning Construct **flexible model** for p(z|data) or fluxes(z) from spectroscopic training data No likelihood, built-in prior, needs representative data

clustering redshifts Constrain N(z) using spatial **cross-correlations** with spectroscopic or photometric samples Requires overlapping samples, bias model

= validating fraction of galaxies in redshift PDF confidence intervals

Data set: DES SV

- Full SV data: 20+ million objects
- Gold sample: 18 < *i* magnitude < 22.5
- <u>Training</u>: VVDS, VIPERS, OzDES, ACES, 8k objects
- <u>Validation</u>: zCOSMOS, 8k objects

DES SV photo-z's (Bonnett + 2015)

<u>BPZ</u>: template fitting, 8+interpolated SEDs, calibrated priors <u>SKYNET</u>: machine learning (Mixture Density Networks)

interpretable model but biased photo-z's & under-estimated errors

unbiased photo-z's but not interpretable & over-estimated errors

Photo-z uncertainty budget						
Statistical	Systematic					
Aleatoric uncertainties	Data biases					
true data noise,	misestimated fluxes,					
flux variances, etc	zeropoints, variance, etc					
Epistemic uncertainties	Model biases					
<i>unmodeled SED effects,</i>	miscalibrated SEDs or					
<i>variability, variance, etc</i>	priors p(z, t, ell, etc)					

Data

Model

Wish list

Precise and accurate redshift PDFs

4 sources of uncertainties modeled & propagated explicitly Interpretable PDFs and flux(z) model/priors Combine SED models with machine learning and clustering Likelihood function for hierarchical N(z) inference *Need the flexibility of machine learning and the interpretability/generalization of template fitting*

Solution: hierarchical probabilistic modeling

Full hierarchical model

Full hierarchical model

Standard SED fitting

Hierarchical model: SEDs + corrections

- Base SEDs: CWW library (8)
 + interpolated SEDs
- Linear corrections: NMF/
 PCA of CWW and PEGASE
 SEDs + Gaussian corrections

 $f_t^{\text{corrected}}(\lambda) = f_t^{\text{base}}(\lambda) + \sum_i \alpha_{it} f_i^{\text{correction}}(\lambda)$

 SED variance constructed from corrections

$$\operatorname{Var}_{t}(\lambda) = \left(\sum_{i} \beta_{it} f_{i}^{\operatorname{correction}}(\lambda)\right)^{2}$$

Hierarchical model: priors

- ▶ <u>Factorization</u>: $p(z,m,t) = \begin{bmatrix} p(z|m,t) & p(t|m) & p(m) \\ redshifts & types & magnitudes \end{bmatrix}$
- Magnitude prior: p(ell or m) uniform (in reference band)

• Type prior:
$$p(type = t|m) = v_t(m)$$
 with $\sum_t v_t(m) = 1 \ \forall m$

- = Dirichlet prior on the simplex, with $v_t(m)$ quadratic in m
- <u>Redshift prior</u>: (all parameters quadratic in m)

Simple N(z):
$$p(z|m,t) = \frac{z}{\bar{z}_t(m)} \exp\left(-\frac{z^2}{2\bar{z}_t(m)}\right)$$

Gridded Gaussian Mixture: $p(z|m,t) = \sum_{i} \gamma_i(m) \mathcal{N}(\mu_i - z; \Delta)$

Hierarchical model: flux/noise corrections

Multiplicative zero point corrections:

Quadratic in reference magnitude: $\hat{F}_b \longrightarrow \hat{F}_b \times w_b(m)$

General form (neural network!): $\hat{F}_b \longrightarrow \hat{F}_b \times w_b(\hat{F}_1, \cdots, \hat{F}_B)$

Minimum magnitude error per band:

Quadratic in reference magnitude: $\sigma_{\hat{m}_b}^2 \longrightarrow \max[\sigma_{\hat{m}_b}^2, w'_b(m)]$ General (neural network): $\sigma_{\hat{m}_b}^2 \longrightarrow \max[\sigma_{\hat{m}_b}^2, w'_b(m_1, \cdots, m_B)]$

Hierarchical model: posterior

$$p(\vec{\alpha}, \vec{\beta}, \vec{H} | \{\hat{\vec{F}}_i\}) \propto p(\vec{\alpha}, \vec{\beta}, \vec{H}) \prod_{i=1}^{N_{obj}} \sum_{t=1}^{N_{types}} Q_{it}(\vec{\alpha}, \vec{\beta}, \vec{H})$$

- Alpha: parameters of the SEDs / flux model
- Beta: parameters of the data error recalibration
- **H**: parameters of the prior p(z, t, I)
- Qit: marginal evidence of the i-th object under the model
- Analytic solution for ell marginalization since additive or multiplicative scaling in Gaussian likelihood
- Here for spectroscopic training set, but could be written for photometric data too!

- Google's toolskit for linear algebra, covering numpy+scipy functionalities
- Build graphs of data/operations + gradients with automatic/symbolic differentiation
- Best optimizers on the market
- Interfaces with deep learning & probabilistic inference libraries
- Great for optimization and modeling. Advanced inference/ sampling via external libraries such as Edward.

Models

interp	prior	SED mean	SED	mag error	N_{par}	$\log[Q]/N_{\rm obj}$	$\log[Q]/N_{\rm obj}$
SEDs	p(z,t,m)	$\operatorname{corrections}$	variances	corrections		(training)	(validation)
2	simple	\checkmark			2398	-9.04	-7.49
2	simple			f(m)	210	17.49	18.34
2	simple	\checkmark		f(m)	2410	19.43	20.00
0	simple	\checkmark	\checkmark		1672	18.57	19.24
2	simple	\checkmark	\checkmark		4598	19.87	20.43
2	GMM	\checkmark	\checkmark		5126	19.73	20.21
2	simple	\checkmark	\checkmark	f(m)	4610	19.83	20.35
2	GMM	\checkmark	\checkmark	f(m)	5138	19.93	20.44
2	simple	\checkmark	\checkmark	NN	5022	19.73	20.33
4	simple	\checkmark	\checkmark	NN	7948	20.43	20.84

Findings

- 1. Cannot eliminate bias without SED corrections or variance (simultaneously optimized with SED priors)
- 2. Models with SED variance or noise have good QQ metrics
- 3. Even with SED variance, some extra g-band noise is needed
- 4. Redshift PDFs are more compact/precise

1. Cannot eliminate bias without SED corrections or variance

HM: 2 interpolated SEDs, extra photometric noise (no SED corrections or variance)

2. Models with SED variance or noise have good QQ metrics

HM: 2 interpolated SEDs with SED variance & extra noise

3. Even with SED variance, some extra g-band noise is needed

HM: simple prior, 2 interpolated SEDs, with SED corrections, magerr corrections

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

4. Redshift PDFs are more compact/precise

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

Findings (continued)

- 5. Outliers are consistent across models
- 6. SED priors and corrections are interpretable
- 7. More complex redshift priors marginally helps
- 8. Number of interpolated SEDs marginally helps
- 9. More complex noise corrections marginally helps

Example of SEDs and priors (top 8)

HM: simple prior, 2 interpolated SEDs, with SED corrections, variance, magerr corrections

Example of NN noise corrections

HM: simple prior, 4 interpolated SEDs, with SED corrections, variance, magerr corrections (NNs)

Imaging surveys require exquisite photo-z's

Standard methods lack **flexibility** or **interpretability** We have the technology+power to do it right

Hierarchical SED models deliver accurate + accurate + interpretable redshifts probabilities, and interpretable physical model + data recalibration

FUTURE: improved models + semi-supervised learning + combine with N(z) inference