Cosmology using voids in largescale structure surveys

Seshadri Nadathur

SCLSS, Oxford

Based on work with Paul Carter and Will Percival

SN & Percival, arXiv:1712.07575 SN, Carter & Percival, due soon

Motivation

1. Voids possible tools for Alcock-Paczynski tests with future surveys

Potentially outperform BAO with Euclid? But RSD degenerate with AP! Lavaux & Wandelt 2012

- 2. Environment-dependence of growth rate! $f = \frac{d \ln D}{d \ln a}$ density-dependent screening in modified gravity models ...
- 3. Complementary to galaxy clustering RSD

Preliminary notes

All simulation results shown in this talk are from custom-made mock void and galaxy catalogues from the Big MultiDark simulation

The mock galaxies match **BOSS** (CMASS) galaxies, z = 0.52

Simulation volume ~ Stage IV LSS surveys (DESI, Euclid)

Void-finding uses **ZOBOV** algorithm – though results are quite general

Single simulation box, jackknife error estimates

The void-galaxy correlation function

 $\xi_{vg}(\mathbf{r})$: cross-correlation between void and galaxy positions (equivalent to the galaxy density profile around a void)

The void-galaxy correlation function

 $\xi_{vg}(\mathbf{r})$: cross-correlation between void and galaxy positions

(equivalent to the galaxy density profile around a void)

Void-galaxy RSD modelling

State of modelling so far:

(simulation) data

Void-galaxy RSD modelling

State of modelling so far:

Void-galaxy RSD modelling

State of modelling so far:

A linear model

Assumption #1: number of void-galaxy pairs conserved

$$(1 + \xi^{s}(\mathbf{s})) d^{3}s = (1 + \xi^{r}(\mathbf{r})) d^{3}r$$

Assumption #2: RSD due to galaxy motions only

$$\mathbf{s} = \mathbf{r} + \frac{\mathbf{v} \cdot \hat{\mathbf{X}}}{aH} \hat{\mathbf{X}}$$

Assumption #3: Linear dynamics, governed by void alone

$$\mathbf{v}(\mathbf{r}) = -\frac{1}{3} f a H \Delta(r) \mathbf{r} \equiv v_r \hat{\mathbf{r}} \qquad ; \qquad \Delta(r) \equiv \frac{3}{r^3} \int_0^r \delta(y) y^2 dy$$

A linear model

Assumption #1 + Assumption #2 + Assumption #3 gives

$$1 + \xi^{s}(\mathbf{s}) = (1 + \xi^{r}(\mathbf{r})) \left[1 - \frac{f}{3} \Delta(r) - f \mu^{2} \left(\delta(r) - \Delta(r) \right) \right]^{-1}$$

Expand to linear order in δ, Δ

$$\xi^{s}(s,\mu) = \xi^{r}(r) + \frac{f}{3}\Delta(r)\left(1 + \xi^{r}(r)\right)$$
$$+ f\mu^{2}\left[\delta(r) - \Delta(r)\right]\left(1 + \xi^{r}(r)\right)$$

$$\xi^{s}(s,\mu) = \xi^{r}(r) + \frac{f}{3}\Delta(r)(1+\xi^{r}(r))$$
$$+f\mu^{2}\left[\delta(r) - \Delta(r)\right](1+\xi^{r}(r))$$

SN & Percival 2017

Key features:

• $\xi\delta, \ \xi\Delta$ are **linear order** inside voids!

$$\xi^{s}(\boldsymbol{s},\mu) = \xi^{r}(\boldsymbol{r}) + \frac{f}{3}\Delta(r)(1+\xi^{r}(\boldsymbol{r}))$$
$$+f\mu^{2}\left[\delta(r) - \Delta(r)\right](1+\xi^{r}(\boldsymbol{r}))$$

SN & Percival 2017

Key features:

- $\xi\delta$, $\xi\Delta$ are **linear order** inside voids!
- Coordinate shift important at linear order!

$$\xi(r) = \xi(s) + \xi'(s)\frac{f}{3}s\Delta(s)\mu^2 + \dots$$

$$\xi^{s}(s,\mu) = \xi^{r}(r) + \frac{f}{3}\Delta(r)(1+\xi^{r}(r))$$
$$+f\mu^{2}\left[\delta(r) - \Delta(r)\right](1+\xi^{r}(r))$$

SN & Percival 2017

Key features:

- $\xi\delta$, $\xi\Delta$ are **linear order** inside voids!
- **Coordinate shift** important at linear order!

$$\xi(r) = \xi(s) + \xi'(s)\frac{f}{3}s\Delta(s)\mu^2 + \dots$$

- Linear galaxy bias does not hold, $\xi(r) \neq b\delta(r)$

Improved linear model

Important improvement

old model residuals new model residuals 0.20 0.20 0.15 0.15 50 50 0.10 0.10 $\pi \left[h^{-1} \mathrm{Mpc} \right]$ $\pi \left[h^{-1} \mathrm{Mpc} \right]$ 0.05 0.05 0.00 0.00 0 0 -0.05-0.05-0.10-0.10-50 -50 -0.15-0.15 -0.20 -0.20 -50 50 -50 50 0 0 $\sigma [h^{-1} \mathrm{Mpc}]$ $\sigma [h^{-1} \mathrm{Mpc}]$

Performs *much* better!

Why doesn't this RSD model fit perfectly?

Dispersion around coherent outflow is large:

Adding velocity dispersion to the model

Allow for a dispersion in los velocities, $\mathbf{v} = v_r \hat{\mathbf{r}} + v_{||} \hat{\mathbf{X}}$, then:

$$1 + \xi^{s}(\sigma, \pi) = \int dv_{||} P(v_{||}) (1 + \xi^{r}(r)) \left| J\left(\frac{\mathbf{s}}{\mathbf{r}}\right) \right|^{-1}$$
assume Gaussian pdf,
can be scale-dependent expand to linear
order as before

Adding velocity dispersion to the model

Allow for a dispersion in los velocities, $\mathbf{v} = v_r \hat{\mathbf{r}} + v_{||} \hat{\mathbf{X}}$, then:

$$1 + \xi^{s}(\sigma, \pi) = \int dv_{||} P(v_{||}) (1 + \xi^{r}(r)) \left| J\left(\frac{\mathbf{s}}{\mathbf{r}}\right) \right|^{-1}$$

Note, **not**

$$1 + \xi^s(\sigma, \pi) = \int \frac{(1 + \xi^r(r))}{\sqrt{2\pi}\sigma_v} \exp\left(-\frac{(v_{||} - v_r(r)\mu)^2}{2\sigma_v^2}\right) dv_{||}$$

standard streaming model result **does not hold** for voids!

Improved linear model with dispersion

Even better residuals

For quantitative analyses, expand in terms of multipoles

$$\xi_{\ell}^{s}(s) = \int_{0}^{1} \xi^{s}(s,\mu) \left(1+2\ell\right) P_{\ell}(\mu) d\mu$$

$$\int_{\text{Legendre polynomials}} \left(1+2\ell\right) P_{\ell}(\mu) d\mu$$

To linear order, only **monopole** and **quadrupole** are non-zero

$$\xi_0^s(s)$$
 , $\xi_2^s(s)$

Completely linear RSD model works well on all scales

Completely linear RSD model works well on all scales

Completely linear RSD model works well on all scales

Fitting for the growth rate

Theory depends on growth rate, so can be used to fit for f

Fitting for the growth rate

Fitting requires 3 functions as input:

$$\xi^{r}(r), \delta(r), \sigma_{v_{||}}(r)$$

either from simulation OR reconstructed from data

(must be?) calibrated from simulation

Parameter that is fit is $f(\text{not } f\sigma_8!)$

Fitting for the growth rate

Fitting requires 3 functions as input:

Growth rate, f(z=0.52)

Likelihood

(must be?) calibrated from simulation

 $f = 0.78 \pm 0.02~(2.7\%)$

using all separation scales

 $f = 0.77 \pm 0.02 \ (2.8\%)$

using only scales within mean void scale

 $(f_{\rm fid} = 0.761)$ SN & P

A major practical problem

In real data, we only have redshift-space galaxy positions

→ we only have redshift-space voids

A major practical problem

Assumption #1: number of void-galaxy pairs conserved

$$(1 + \xi^{s}(\mathbf{s})) d^{3}s = (1 + \xi^{r}(\mathbf{r})) d^{3}r$$

Assumption #2: RSD due to galaxy motions only

$$\mathbf{s} = \mathbf{r} + \frac{\mathbf{v} \cdot \hat{\mathbf{X}}}{aH} \hat{\mathbf{X}}$$

Assumption #3: Linear dynamics, governed by void alone

$$\mathbf{v}(\mathbf{r}) = -\frac{1}{3} f a H \Delta(r) \mathbf{r} \equiv v_r \hat{\mathbf{r}} \qquad ; \qquad \Delta(r) \equiv \frac{3}{r^3} \int_0^r \delta(y) y^2 dy$$

A major practical problem

Assumption #1: number of void-galaxy pairs conserved

$$(1+\xi^s(\mathbf{s}))\,d^3s \neq (1+\xi^r(\mathbf{r}))\,d^3r$$

Assumption #2: RSD due to galaxy motions only

$$\mathbf{s} = \mathbf{r} + \underbrace{\mathbf{x} \cdot \hat{\mathbf{X}}}_{\alpha H} \hat{\mathbf{X}}$$

Assumption #3: Linear dynamics, governed by void alone

$$\mathbf{v}(\mathbf{r}) = -\frac{1}{3} f a \mathbf{X} \Delta(r) \mathbf{r} \equiv v_r \hat{\mathbf{r}} \qquad ; \qquad \Delta(r) \equiv \frac{3}{r^3} \int_0^r \delta(y) y^2 dy$$

Even worse than that ...

A major problem

Luckily, there is a solution

Luckily, there is a solution

we can reconstruct the real-space galaxy field

Solution: reconstruction of real-space galaxy field

Eulerian posn. as Lagrangian posn. + displacement, $\mathbf{x}(\mathbf{q},t) = \mathbf{q} + \Psi(\mathbf{q},t)$

Smooth redshift-space galaxy field and solve for displacement:

$$\nabla \cdot \boldsymbol{\Psi} + \frac{f}{b} \nabla \cdot (\boldsymbol{\Psi} \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}} = -\frac{\delta_g}{b}$$

Remove (linear, Kaiser) RSD component of displacement:

$$\Psi_{\rm RSD} = -f(\boldsymbol{\Psi} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}$$

Iterate until convergence (2-3 iterations)

Obtain "pseudo real-space" galaxy distribution

Reconstruction works

Avoiding circularity

Results

Marginalising over bias,
$$f = 0.72^{+0.03}_{-0.01}$$
 (68% c.l.)

consistent with fiducial, though slightly low

Summary

- Void-galaxy RSD measurements probe interesting physics, not the same as galaxy correlation
- A completely linear RSD model is sufficient on all scales!
- We made major improvements in the modelling
- The improved model allows precise constraints on growth rate *in low density regions*
- Practical issues with measurement are very important, but can be mostly solved using a reconstruction technique
- Further investigation very much required!