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Gigaparsec Scales
• (P(k)/σP)2 ~ k3Vsurvey/(4π2)
• ~ 1 at k = 1 hGpc-1  for 20 (Gpc/h)3

• DESI > 28 (Gpc/h)3 with nP > 1 at k = 0.14 
hMpc-1 (140 hGpc-1)
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Motivation: Primordial Potential
• Two orders of magnitude of ~linear information
• linear matter P(k) -> primordial P(k)

• biased power spectrum → primordial non-
Gaussianity

Planck Collaboration: Cosmological parameters
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Fig. 21. Left: Constraints on the tensor-to-scalar ratio r0.002 in the ⇤CDM model, using Planck TT+lowP and Planck
TT+lowP+lensing+BAO+JLA+H0 (red and blue, respectively) assuming negligible running and the inflationary consistency rela-
tion. The result is model-dependent; for example, the grey contours show how the results change if there were additional relativistic
degrees of freedom with �Ne↵ = 0.39 (disfavoured, but not excluded, by Planck). Dotted lines show loci of approximately con-
stant e-folding number N, assuming simple V / (�/mPl)p single-field inflation. Solid lines show the approximate ns–r relation for
quadratic and linear potentials to first order in slow roll; red lines show the approximate allowed range assuming 50 < N < 60 and
a power-law potential for the duration of inflation. The solid black line (corresponding to a linear potential) separates concave and
convex potentials. Right: Equivalent constraints in the ⇤CDM model when adding B-mode polarization results corresponding to the
default configuration of the BICEP2/Keck Array+Planck (BKP) likelihood. These exclude the quadratic potential at a higher level
of significance compared to the Planck-alone constraints.

limited by cosmic variance of the dominant scalar anisotropies,
and it is also model dependent. In polarization, in addition to B-
modes, the EE and T E spectra also contain a signal from tensor
modes coming from reionization and last scattering. However,
in this release the addition of Planck polarization constraints at
` � 30 do not significantly change the results from temperature
and low-` polarization (see Table 5).

Figure 21 shows the 2015 Planck constraint in the ns–r plane,
adding r as a one-parameter extension to base ⇤CDM. Note that
for base ⇤CDM (r = 0), the value of ns is

ns = 0.9655 ± 0.0062, Planck TT+lowP. (38)

We highlight this number here since ns, a key parameter for in-
flationary cosmology, shows one of the largest shifts of any pa-
rameter in base ⇤CDM between the Planck 2013 and Planck
2015 analyses (about 0.7�). As explained in Sect. 3.1, part of
this shift was caused by the ` ⇡ 1800 systematic in the nominal-
mission 217 ⇥ 217 spectrum used in PCP13.

The red contours in Fig. 21 show the constraints from Planck
TT+lowP. These are similar to the constraints shown in Fig. 23
of PCP13, but with ns shifted to slightly higher values. The ad-
dition of BAO or the Planck lensing data to Planck TT+lowP
lowers the value of ⌦ch2, which at fixed ✓⇤ increases the small-
scale CMB power. To maintain the fit to the Planck tempera-
ture power spectrum for models with r = 0, these parameter
shifts are compensated by a change in amplitude As and the tilt
ns (by about 0.4�). The increase in ns to match the observed
power on small scales leads to a decrease in the scalar power
on large scales, allowing room for a slightly larger contribution

from tensor modes. The constraints shown by the blue contours
in Fig. 21, which add Planck lensing, BAO, and other astrophys-
ical data, are therefore tighter in the ns direction and shifted to
slightly higher values, but marginally weaker in the r-direction.
The 95 % limits on r0.002 are

r0.002 < 0.10, Planck TT+lowP, (39a)
r0.002 < 0.11, Planck TT+lowP+lensing+ext, (39b)

consistent with the results reported in PCP13. Note that we as-
sume the second-order slow-roll consistency relation for the ten-
sor spectral index. The result in Eqs. (39a) and (39b) are mildly
scale dependent, with equivalent limits on r0.05 being weaker by
about 5 %.

PCP13 noted a mismatch between the best-fit base ⇤CDM
model and the temperature power spectrum at multipoles ` <

⇠
40,

partly driven by the dip in the multipole range 20 <⇠ ` <⇠ 30. If
this mismatch is simply a statistical fluctuation of the ⇤CDM
model (and there is no compelling evidence to think otherwise),
the strong Planck limit (compared to forecasts) is the result of
chance low levels of scalar mode confusion. On the other hand if
the dip represents a failure of the ⇤CDM model, the 95 % limits
of Eqs. (39a) and (39b) may be underestimates. These issues are
considered at greater length in Planck Collaboration XX (2015)
and will not be discussed further in this paper.

As mentioned above, the Planck temperature constraints on
r are model-dependent and extensions to ⇤CDM can give sig-
nificantly di↵erent results. For example, extra relativistic de-
grees of freedom increase the small-scale damping of the CMB
anisotropies at a fixed angular scale, which can be compensated
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Table 2.10: Projected constraints on inflationary observables obtained by DESI. In all cases, we
include constraints from the Planck satellite and BAO information from DESI galaxies, quasars and
the Ly-↵ forest. We show the result of including information from the broadband galaxy power
spectrum (“Gal”) out to kmax = 0.1 and 0.2 hMpc�1, and from the Ly-↵ forest. The numbers in
parentheses show the relative improvement over Planck. Broadband Ly-↵ forest constraints include
⇠ 100 existing high resolution spectra to constrain the IGM model. ns constraints assume fixed ↵s.
Both constraints are marginalized over ⌃m⌫ , and the fiducial values are ns = 0.963, ↵s = 0.

Data �ns �↵s

Gal (kmax = 0.1hMpc�1) 0.0025 (1.3) 0.005 (1)
Gal (kmax = 0.2hMpc�1) 0.0022 (1.5) 0.004 (1.3)
Ly-↵ forest 0.0029 (1.1) 0.0027 (1.9)
Ly-↵ forest + Gal (kmax = 0.2) 0.0019 (1.7) 0.0019 (2.7)

quasars, and Ly-↵ forest, combined with CMB data from the Planck satellite. The table shows
strong constraints on ns, and improvements up to a factor of three over Planck alone, under the
assumption that there is no significant running in the spectral index. Achieving these constraints
will require excellent control of broad-band systematics in the Ly-↵ forest and galaxy analyses.
But the e↵ort is worthwhile, as these measurements can have far-reaching implications on our
understanding of the very early Universe, as we now describe.

For the spectral index, the increased accuracy implies much better constraints on models of
inflation. With the DESI+Planck constraints, excellent constraints on the spectral index will
e↵ectively reduce the allowed region in the plane of ns and r, the ratio of tensor to scalar modes, to a
vertical line pinned at the measured value of ns. Combining these results with better measurements
of the r from the small-scale CMB experiments will lead to much better constraints on inflationary
models. Even without the accompanying r measurements, better determination of the spectral
index is important: for example, for inflationary potentials V (�) / �m, where � is the inflaton field,
the spectral index and the total number of e-folds of inflationN are related via 1�ns = (m+2)/(2N)
[126]. Hence, for this class of models the duration of the inflationary phase would be determined
by DESI very precisely.

Implications of the precise measurements of the running of the spectral index ↵s are even more
impressive. In standard single-field slow-rolling inflationary models, the running of the spectral
index is of the order O((1 � ns)2) ⇠ 1 ⇥ 10�3 if ns ⇠ 0.96. This means that DESI will start to
approach the region of expected detection in minimal inflationary models. More importantly, a
detection of running larger than the slow-roll prediction would imply either that inflation involves
multiple fields, or a breakdown of the slow roll approximation [127], or else that a non-canonical
kinetic term is controlling inflationary dynamics [128]. Any detection of the running of the spectral
index would represent a significant advance in our understanding of the physics of inflation.

Primordial non-Gaussianity

One of the fundamental predictions of the simplest inflationary models is that the density fluc-
tuations in the early Universe that seeded large-scale structure were nearly Gaussian distributed.
A single field slow-roll inflation with canonical kinetic energy and adiabatic vacuum predicts very
small amount of non-Gaussianity. A violation of any of these conditions, however, may lead to large
non-Gaussianity. A simple, frequently studied model is that of non-Gaussianity of the local type,
� = �G + fNL(�2

G � h�2

Gi), where � is the primordial curvature fluctuation and �G is a Gaussian
random field. A detection of nonzero fNL would rule out the simplest model of inflation, while a

DESI forecasts

() denotes gain over Planck

April 20th 2018                                 SCLSS



local fNL
• Amount of non-Gaussianity in primordial field in squeezed 
k-space triangle configurations

• Introduces coupling between short and long wavelength 
modes

• And thus scale dependent bias for biased tracers with k-2 
dependence

3

FIG. 1: Illustration of the scales of interest in our analysis (with the linear matter power spectrum in arbitrary units shown in
red for comparison). We consider the primordial non-Gaussianity information contained in the modulation of short modes, with
wave number kS , by long-wavelength perturbations with wave number qL. We study long modes in the range qmin < qL < qL,max

and short modes in the range kS,min < kS < kmax. The squeezed-limit is enforced by imposing a hierarchy qL,max ⌧ kS,min. In
this limit, the position-dependent power spectrum approach introduced in Section IIIA gives an extremely useful description
of the squeezed-limit bispectrum and collapsed trispectrum information content. The dashed magenta line indicates the wave
number corresponding to the “local volume” VS over which the position-dependent power spectrum is estimated (see Section
IIIA for details).

II. FORMALISM

A. Local primordial non-Gaussianity

We consider primordial non-Gaussianity given by the local ansatz [12],

�(x) = �̃(x) + fNL

⇣
�̃
2(x)� h�̃

2
i

⌘
, (1)

where � is the primordial Bardeen potential and �̃ is a Gaussian auxiliary field. In Fourier space3, the matter density
perturbation at redshift z is to linear order related to � by,

�(k) = M(k)�(k), with M(k) =
2 k2 T (k)D(z)

3⌦m H
2
0

, (2)

where ⌦m is the matter density relative to the critical density and H0 is the Hubble parameter, both at z = 0. The
factor T (q) is the transfer function of matter perturbations, normalized to unity at low wave number q, and D(z) is

3
We use the Fourier convention �(k) =

R
d3x eik·x �(x).
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FIG. 3: Left: The squeezed-limit bispectrum is the correlation between one long and two short modes. The pair of short modes
is contained in the long-wavelength modulation of the position-dependent power spectrum, �(ks) �(�kS � qL) ⇢ �P̂ (ki;�qL),
where ki indicates a bin of short modes containing kS (see Section III). The squeezed-limit matter bispectrum is thus equivalent
to the cross-spectrum between a long-mode matter perturbation and the long-mode position-dependent power spectrum per-
turbation. Right: The collapsed trispectrum correlates two pairs of short modes. It can be seen as the (cross-)power spectrum
of two instances of the position-dependent power spectrum, h�P̂ (ki;qL) �P̂ (kj ;�qL)i.

First, it is only at qL ⌧ keq that the primordial mode-coupling has the characteristic / 1/q2L scale-dependence
relative to non-primordial mode-coupling, �L ⇠ q

�2
L �L. As shown in Figure 2, at larger qL, the scale-dependence

becomes flatter. In principle, this is still a distinct signal from the non-primordial modulation, but in practice it
may become much harder to distinguish the two and the primordial signal is likely to be much more degenerate
with cosmological parameters describing (non-linear) evolution [21, 48]. Related to this point, because of the scale-
dependence, for large qL, the primordial mode-coupling becomes extremely small compared to the non-primordial one.
The only reason the information content is not similarly suppressed is that the number of independent modes (per
d ln qL) is much larger at small scales. The information contained at large qL, while in principle there, may therefore
be di�cult to extract as this is e↵ectively a very “foreground dominated” regime.

A second reason for focusing on very small qL is that we want the long modes to be safely inside the linear regime.
This way, we are justified in treating the long modes as Gaussian so that in particular all information is contained in
just the 2-point functions of long modes. Finally, the restriction to small qL allows us to keep kS,min fixed, whereas if
we wanted to include a larger range of qL values, we would have to adjust kS,min so that the condition kS,min > qL is
always satisfied (technically, kS,min � qL, to be in the squeezed limit).

C. Information content multiple biased tracers

In the next sections, we will use that not only the matter and halo power spectrum, but also the squeezed-limit
bispectrum and collapsed trispectrum can be treated in terms of (cross-)power spectra of multiple biased tracers of
the long-wavelength matter perturbations. We here briefly review the general formalism for computing the Fisher
information [49–51] from multiple tracers.

Consider a set of biased tracers (since we will later specifically study tracers of the long mode matter perturbations,
we here use the wave vector qL),

�a(qL) = ba(qL) �(qL) + ✏a(qL), (10)

where �(qL) is the matter overdensity with power spectrum defined by,

h�(k) �(k0)i = (2⇡)3 �(D)(k+ k
0)P (k), (11)

ba(qL) is the tracer bias, and ✏a(qL) is a stochastic noise contribution, which is uncorrelated with �(qL), and has
power spectrum,

h✏a(k) ✏b(k
0)i = (2⇡)3 �(D)(k+ k

0)Nab = (2⇡)3 �(D)(k+ k
0)Na �

(K)
ab . (12)

The last equality captures the assumption, which we will apply in the following, that the shot noise is uncorrelated
between di↵erent tracers. Then, the tracer (cross-)power spectra are given by,

Pab(qL) = ba(qL) bb(qL)P (qL) +Na �
(K)
ab . (13)

Let us now consider the information contained in some (sub)set of such spectra, i.e. our observables are the (cross-
)power spectrum estimators,

ÔA(qL) ⌘ P̂ab(qL), (14)

4

FIG. 2: The quantity M�1(k), which gives the ratio of a primordial potential fluctuation � with wave number k to the
corresponding matter density perturbation � (at z = 1). This quantity determines the scale-dependence (relative to �) of the
primordial modulation with long-wavelength perturbations of small-scale power and halo number density.

the linear growth function, normalized such that D(z) = 1/(1+ z) during matter domination. We show M
�1(k), the

ratio between the primordial potential and the matter density perturbation as a function of scale, at redshift z = 1,
in Figure 2.

B. Long-short mode coupling and primordial non-Gaussianity

Throughout this article, we focus on the squeezed-limit signal induced by fNL, i.e. the mode-coupling between long
and short wavelength perturbations. We thus formally introduce a hierarchy of scales by defining long modes to have
wave number qL and short modes wave number kS with,

qL < qL,max ⌧ kS,min < kS . (3)

As illustrated schematically in Figure 1, we focus mainly on long wavelength modes larger than the matter-radiation
equality scale, i.e. we take qL,max . keq ⇠ 0.02h/Mpc. To be fully in the squeezed limit, one wants kS,min to be
significantly larger than qL,max, as illustrated in the Figure, although in practice we will relax this requirement a little
in our forecasts. We will also define a longest long mode, qmin, e↵ectively determined by the survey volume, and a
“shortest short mode”, kmax, set by how deep into the non-linear regime we are able to probe. We discuss in more
detail the motivation behind the choice of these scales, and in particular the choice of the range of long modes, at
the end of this subsection, and we will discuss the exact numerical choices of qL,max, kS,min, kmax, qmin when we first
introduce quantitative results in Section III C.
We can now express the squeezed-limit mode-coupling in Fourier space by writing the response of the short modes

to the long modes,

�(kS) = �̃(kS) + 2fNL

Z

L

d
3
qL

(2⇡)3
�(qL) �̃(kS � qL) = �̃(kS) + 2fNL

Z

L

d
3
qL

(2⇡)3
M

�1(qL) �(qL) �̃(kS � qL), (4)

where integrals with subscript L are over qL < qL,max (i.e. we have explicitly only written the squeezed-limit mode-
coupling). Here, �̃(kS) is the short mode in the absence of long mode perturbations. Throughout this paper, we will

de Putter (2018)

April 20th 2018                                 SCLSS

18

Spectrum Description

P̂11(qL) Matter power spectrum (mm or PK)

P̂h1(qL) Halo-matter cross-spectrum (hm)

P̂hh(qL) Halo power spectrum (hh or PKh)

TABLE III: The power and cross-spectrum estimators of long-mode perturbations considered in Section IV, along with short-
hand notation.

Here6 b
(h)
10 is the linear, Eulerian halo bias and b

(h)
01 describes the response to the primordial potential fluctuation due

to primordial non-Gaussianity7 (with fNL factored out). This bias can be written,

b
(h)
01 = 4

d ln n̄h

d ln�2
R

= 2 (b(h)10 � 1) �c, (51)

where d ln n̄h/d ln�2
R is the response of the background halo number density n̄h to a variation in the initial variance of

fluctuations �2
R on some scale R characteristic of those halos. To obtain the second equality, in which �c ⇡ 1.686 is the

critical overdensity for spherical collapse, we have implicitly assumed a universal halo mass function (see Appendix
E). We will assume the above expression as our fiducial value in the following.

Eq. (50) also includes a stochastic noise, which we will treat as a simple Poissonian shot noise due to the finite
number of halos. The cross-spectrum between the shot noise and the matter overdensity � is equal to zero. Finally,
we do not include redshift space distortions.

A. Scale-dependent bias information content - Formalism

We consider the information in the modulation of halo density by the long-mode primordial potential fluctuation.
Based on the above, in the general notation for biased tracers used in this paper, the halo overdensity (subscript h),
is thus characterized by,

bh(qL) = b
(h)
10 , b

0
h(qL) = 2fNL (b

(h)
10 � 1) �c M

�1(qL), Nh =
1

n̄h
. (52)

For the position dependent power spectrum, the e↵ective shot noise was determined by the shortest included short
mode, kmax, while for scale-dependent bias it is (approximately) given by the Poisson noise due to finite number
of sources, determined by n̄h, the comoving halo number density. An important di↵erence is that, at least in this
paper, we will only consider the halo overdensity of a single sample, whereas the position-dependent power spectrum
constitutes a set of multiple tracers with di↵erent biases. It is straightforward to generalize our analysis to the case
of multiple halo samples, in which case the analogy is even more complete.

Analogously to the treatment of the position-dependent power spectrum in the previous section, we will consider
the halo power spectrum (Phh(qL), or hh in short), the halo-matter cross-spectrum (Ph1(qL), hm in short), and a
joint analysis of Phh(qL), Ph1(qL) and the matter power spectrum P11(qL) (see Table III). We summarize the analytic
expressions for the information content in these probes below. The derivations use the same tools as discussed earlier
for the matter statistics so we will not spell them out.

The Fisher information on fNL in the halo power spectrum is analogous to that in the matter trispectrum, and is
given by,

F (qL) =
2⌃h(qL)⌃00

h(qL)

(1 + ⌃h(qL))
2 (halo power spectrum, hh), (53)

6
We use the superscript (h) to distinguish the halo bias parameters from the general bias parameters describing the tracers that enter

our forecasts.

7
Technically, the non-Gaussian linear bias is proportional to fNL � f1�field

NL , where f1�field
NL = �5/12(ns � 1) is the single-field prediction.

In particular, there is exactly zero physical scale-dependent bias in single-field inflation [66, 67]. For fNL values within near-future

observational reach, the above correction is small and we will ignore it in this work.

3

FIG. 1: Illustration of the scales of interest in our analysis (with the linear matter power spectrum in arbitrary units shown in
red for comparison). We consider the primordial non-Gaussianity information contained in the modulation of short modes, with
wave number kS , by long-wavelength perturbations with wave number qL. We study long modes in the range qmin < qL < qL,max

and short modes in the range kS,min < kS < kmax. The squeezed-limit is enforced by imposing a hierarchy qL,max ⌧ kS,min. In
this limit, the position-dependent power spectrum approach introduced in Section IIIA gives an extremely useful description
of the squeezed-limit bispectrum and collapsed trispectrum information content. The dashed magenta line indicates the wave
number corresponding to the “local volume” VS over which the position-dependent power spectrum is estimated (see Section
IIIA for details).

II. FORMALISM

A. Local primordial non-Gaussianity

We consider primordial non-Gaussianity given by the local ansatz [12],

�(x) = �̃(x) + fNL

⇣
�̃
2(x)� h�̃

2
i

⌘
, (1)

where � is the primordial Bardeen potential and �̃ is a Gaussian auxiliary field. In Fourier space3, the matter density
perturbation at redshift z is to linear order related to � by,

�(k) = M(k)�(k), with M(k) =
2 k2 T (k)D(z)

3⌦m H
2
0

, (2)

where ⌦m is the matter density relative to the critical density and H0 is the Hubble parameter, both at z = 0. The
factor T (q) is the transfer function of matter perturbations, normalized to unity at low wave number q, and D(z) is

3
We use the Fourier convention �(k) =

R
d3x eik·x �(x).



Inflation
• Crazy
• (Some debate remains)
• Seeds all structure formation
• Generic slow-roll model predicts local fNL < 1
• Upcoming galaxy/Ly-α surveys for ns, its 

running, and non-Gaussianity
✴Any model (inflation or otherwise) needs to 
predict these
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(some) local fNL measurements
• pre-Planck

• 21±25 (SDSS; Slosar et al. 2008) 
• 51±30 (WMAP5; Komatsu et al. 2009)
• 48±20 (NVSS+SDSS; Xia et al. 2011)
• 37±20 (WMAP9; Hinshaw et al. 2013)
• 5±21 (NVSS+SDSS+ISW; Giannantonio et al. 2014)

• Planck 2013
• 2.7±5.8 (2015; 2.5±5.7)

• -9±20 (SDSS Quasars; Leistedt et al. 2014)
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Future fNL measurements 19

FIG. 8: Left: As Figure 7 (repeated for ease of comparison). Right: Uncertainty on fNL from halo power spectrum (black)
as a function of the halo number density n̄. The magenta curve shows the total information available in the large-scale halo
overdensity, obtained by performing a cosmic variance canceling multitracer analysis of the long-mode matter overdensity and

the halo overdensity. The observables in this case are the halo power spectrum, halo-matter cross-spectrum, and matter power
spectrum. The halo power spectrum only case is akin to the trispectrum in the left panel in the sense that it is an autocorrelation
of biased tracers of the long-mode matter overdensity. However, in the matter trispectrum case, one has multiple tracers (one
for each short k mode), which allows for a degree of cosmic variance cancellation in the low shot noise limit (right hand side of
plots), while for the single-tracer halo power spectrum a plateau of minimum uncertainty is reached in this limit.

with,

⌃h(qL) ⌘ N
�1
h b

2
h P (qL)

⌃0
h(qL) ⌘ N

�1
h bh b

0
h(qL)P (qL)

⌃00
h(qL) ⌘ N

�1
h (b0h(qL))

2
P (qL). (54)

The information in the halo-matter cross-spectrum is analogous to the matter bispectrum, and is given by,

F (qL) =
⌃00

h(qL)

1 + 2⌃h(qL)
(halo-matter cross-spectrum, hm). (55)

Finally, the joint information from a “multitracer analysis” of hh, hm and mm is,

F (qL) = ⌃00
h(qL) (halo-matter multitracer combi, hh+ hm+mm). (56)

We again consider this latter quantity the total information per mode qL available in scale-dependent bias for a given
number density n̄h. The hh or hm signals separately do not achieve this constraining power due to the long-mode
cosmic variance caused by bh, which is cancelled out in the multitracer approach. Note that, in analogy with the
matter bispectrum, the above information would also be obtained from the halo-matter cross-spectrum, Phm(qL), if
bh is set to zero (i.e. the halo equivalent of the Gaussian covariance approximation).

B. Scale-dependent bias information content - Results

We quantitatively compare the scale-dependent bias approach to the higher order matter statistics in Figure 8.
We again use a fiducial survey volume V = 100 (h�1Gpc)3, e↵ective redshift z = 1, and for the halo sample assume

a fiducial bias b
(h)
10 = 2. For convenience of comparison, the left panel repeats Figure 7, showing �(fNL) from

direct measurement of the matter density statistics. The right panel shows the constraining power of the halo power
spectrum (black), halo-matter cross-spectrum (orange) and the combination of the two plus the matter power spectrum
(magenta). In both panels, we include the same range of long modes, qL = 0.001h/Mpc� 0.02h/Mpc.

Comparing the two panels of Figure 8, we clearly see the same behavior, according to the analogies spelled out
above (hh $TK, hm $BK, etc). The only qualitative di↵erence is that �(fNL) from the halo power spectrum and

de Putter (2018)

100 (Gpc/h)3 survey
b=2 halo bias
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Available Volume

we are about here
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• Universe contains the information to precisely 
constrain primordial potential

• Combination of large-scale structure and CMB 
polarization:
✴ns and its running, amplitude of tensor 
modes, degree of non-Gaussianity

• Can hopefully prove inflation and pin-down 
specific models!

Motivation: bottom-line
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Challenges
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Observational Systematics
BOSS DR9 CMASS galaxies

Ross et al. (2012) eBOSS DR14 quasars
Ata et al. (2017)

DR14 eBOSS Quasar BAO Measurements 9

We calculate ⇠(s, |µ|) in evenly-spaced bins6 in s, testing both
5 and 8 h

�1Mpc, and 0.01 in |µ|. We then determine even moments
of the redshift-space correlation function via

2⇠`(s)
2` + 1

=
100X

i=1

0.01⇠(s, µi)L`(µi), (7)

where µi = 0.01i � 0.005 and L` is a Legendre polynomial of
order `. In this work we only use the ` = 0 moment. By defining
the monopole this way, we ensure an equal weighting as a function
of µ and thus a truly spherically averaged quantity. This means any
distance scale we measure based on the BAO position in ⇠0 matches
our definition of DV (given in Eq. 13).

The resulting correlation function is displayed in Fig. 5, where
it is also compared to the mean of the mock samples we use. We
describe the measurements further in Section 7.1.

4.2.2 Fourier Space

In order to measure the power spectrum of the quasar sample we
start by assigning the objects from the data and random catalogues
to a regular Cartesian grid. This is the starting point for using
Fourier Transform (FT) based algorithms. In order to avoid spuri-
ous grid effects we use a convenient interpolation scheme to smooth
the configuration-space overdensity field.

We embed the entire survey volume into a cubic box with
size Lb = 7200 h

�1 Mpc, and subdivide it into N
3

g = 10243 cu-
bic cells, whose resolution and Nyquist frequency are 7h

�1 Mpc,
and kNy = (2⇡/Lb)Ng/2 = 0.447 hMpc�1, respectively. To
obtain the smoothed overdensity field, an interpolation scheme is
needed for the particle-to-grid assignment. By choosing a suitable
interpolation scheme we can largely reduce the aliasing effect to a
negligible level for frequencies smaller than the Nyqvist frequen-
cies, which in this case comprises the typical scales for the BAO
analysis. Traditional interpolation schemes include the Nearest-
Grid-Point (NGP), Cloud-in-Cell (CIC), Triangular-Shaped-Cloud
(TSC) and Piecewise Cubic Spline (PCS). These options corre-
spond to the zero-th, first, second and third order polynomial
B-spline interpolations, respectively (see Chaniotis & Poulikakos
2004 for higher order interpolation schemes based on B-spline).
Additionally, each of these interpolation schemes has an associated
grid correction factor that has to be applied to the overdensity field
in Fourier space (Jing 2005). The higher the order of the B-spline
polynomial used in the grid interpolation, the smaller the effect
of the grid on the final measurement. Aliasing arises as an extra
limitation which cannot be avoided by just increasing the order of
the grid interpolation scheme. Since for cosmological perturbations
the bandwidth is not limited above a certain maximum cutoff fre-
quency, the unresolved small scale modes are spuriously identified
as modes supported by the grid, resulting in a contamination of the
power spectrum, typically at scales close to the Nyqvist frequency.
Recently, Sefusatti et al. (2016) demonstrated that by displacing
the position of the initial grid by fractions of the size of the grid
cell the effect of the aliasing was greatly suppressed. This proce-
dure is called interlacing and was originally presented in (Hockney
& Eastwood 1981). In particular, Sefusatti et al. (2016) found that
when a 2-step interlacing was combined with a PCS interpolation,

6 The pair-counts are tabulated using a bin width of 1 h�1Mpc and
summed into x h�1Mpc bins, allowing different choices for bin centres
and widths.
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Figure 5. Top panel: The spherically averaged redshift-space correlation
function of the DR14 quasar sample, for data in the SGC (blue squares) and
NGC (red diamonds). The dashed curves display the mean of the 1000 EZ-
mock samples. The data in each region are broadly consistent with the mean
of the mocks and with each other. Bottom panel: The NGC and SGC data
have been combined (solid black curve) and are now compared to both the
EZ and QPM mocks (points with error-bars). The agreement is excellent.
The dashed grey curve displays the result for the data when not applying
systematic weights; the difference is dramatic and has �2 significance of
more than 180. The covariance matrix is dominated by the low number
density of the DR14 quasar sample and the correlation between data points
is low, e.g., the correlation between neighboring s bins is ⇠0.2.

the effect of aliasing was reduced to a level below 0.1%, even at
the Nyquist scale.

In this work, we apply a 5th-order B-spline interpolation to
calculate the overdensity field on the grid. Additionally, we com-
bine two cartesian grids, displaced by half of their grid size, to ac-
count for the aliasing effect. We have checked (by doubling the
number of grid cells per side) that the effect of aliasing is totally
negligible in the range k . 0.4 hMpc�1.

After applying the grid interpolation, we obtain an overdensity
field �(ri) at each grid centre, (Feldman et al. 1994),

�(ri) ⌘ wtot(ri)[nqso(ri) � �nran(ri)]/I
1/2
2

. (8)

The quantity wtot is the total weight for the quasars at the grid
location given by Eq (5), nqso and nran are the number density at
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• BOSS galaxies (Ross et al. 2017), Ly-α forest (Bautista et 
al. 2017), quasars, DES photozs…

BAO Don’t Budge

BOSS DR9 CMASS galaxies

Ross et al. (2012) eBOSS DR14 quasars
Ata et al. (2017)

DR14 eBOSS Quasar BAO Measurements 9

We calculate ⇠(s, |µ|) in evenly-spaced bins6 in s, testing both
5 and 8 h

�1Mpc, and 0.01 in |µ|. We then determine even moments
of the redshift-space correlation function via

2⇠`(s)
2` + 1

=
100X

i=1

0.01⇠(s, µi)L`(µi), (7)

where µi = 0.01i � 0.005 and L` is a Legendre polynomial of
order `. In this work we only use the ` = 0 moment. By defining
the monopole this way, we ensure an equal weighting as a function
of µ and thus a truly spherically averaged quantity. This means any
distance scale we measure based on the BAO position in ⇠0 matches
our definition of DV (given in Eq. 13).

The resulting correlation function is displayed in Fig. 5, where
it is also compared to the mean of the mock samples we use. We
describe the measurements further in Section 7.1.

4.2.2 Fourier Space

In order to measure the power spectrum of the quasar sample we
start by assigning the objects from the data and random catalogues
to a regular Cartesian grid. This is the starting point for using
Fourier Transform (FT) based algorithms. In order to avoid spuri-
ous grid effects we use a convenient interpolation scheme to smooth
the configuration-space overdensity field.

We embed the entire survey volume into a cubic box with
size Lb = 7200 h

�1 Mpc, and subdivide it into N
3

g = 10243 cu-
bic cells, whose resolution and Nyquist frequency are 7h

�1 Mpc,
and kNy = (2⇡/Lb)Ng/2 = 0.447 hMpc�1, respectively. To
obtain the smoothed overdensity field, an interpolation scheme is
needed for the particle-to-grid assignment. By choosing a suitable
interpolation scheme we can largely reduce the aliasing effect to a
negligible level for frequencies smaller than the Nyqvist frequen-
cies, which in this case comprises the typical scales for the BAO
analysis. Traditional interpolation schemes include the Nearest-
Grid-Point (NGP), Cloud-in-Cell (CIC), Triangular-Shaped-Cloud
(TSC) and Piecewise Cubic Spline (PCS). These options corre-
spond to the zero-th, first, second and third order polynomial
B-spline interpolations, respectively (see Chaniotis & Poulikakos
2004 for higher order interpolation schemes based on B-spline).
Additionally, each of these interpolation schemes has an associated
grid correction factor that has to be applied to the overdensity field
in Fourier space (Jing 2005). The higher the order of the B-spline
polynomial used in the grid interpolation, the smaller the effect
of the grid on the final measurement. Aliasing arises as an extra
limitation which cannot be avoided by just increasing the order of
the grid interpolation scheme. Since for cosmological perturbations
the bandwidth is not limited above a certain maximum cutoff fre-
quency, the unresolved small scale modes are spuriously identified
as modes supported by the grid, resulting in a contamination of the
power spectrum, typically at scales close to the Nyqvist frequency.
Recently, Sefusatti et al. (2016) demonstrated that by displacing
the position of the initial grid by fractions of the size of the grid
cell the effect of the aliasing was greatly suppressed. This proce-
dure is called interlacing and was originally presented in (Hockney
& Eastwood 1981). In particular, Sefusatti et al. (2016) found that
when a 2-step interlacing was combined with a PCS interpolation,

6 The pair-counts are tabulated using a bin width of 1 h�1Mpc and
summed into x h�1Mpc bins, allowing different choices for bin centres
and widths.
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Figure 5. Top panel: The spherically averaged redshift-space correlation
function of the DR14 quasar sample, for data in the SGC (blue squares) and
NGC (red diamonds). The dashed curves display the mean of the 1000 EZ-
mock samples. The data in each region are broadly consistent with the mean
of the mocks and with each other. Bottom panel: The NGC and SGC data
have been combined (solid black curve) and are now compared to both the
EZ and QPM mocks (points with error-bars). The agreement is excellent.
The dashed grey curve displays the result for the data when not applying
systematic weights; the difference is dramatic and has �2 significance of
more than 180. The covariance matrix is dominated by the low number
density of the DR14 quasar sample and the correlation between data points
is low, e.g., the correlation between neighboring s bins is ⇠0.2.

the effect of aliasing was reduced to a level below 0.1%, even at
the Nyquist scale.

In this work, we apply a 5th-order B-spline interpolation to
calculate the overdensity field on the grid. Additionally, we com-
bine two cartesian grids, displaced by half of their grid size, to ac-
count for the aliasing effect. We have checked (by doubling the
number of grid cells per side) that the effect of aliasing is totally
negligible in the range k . 0.4 hMpc�1.

After applying the grid interpolation, we obtain an overdensity
field �(ri) at each grid centre, (Feldman et al. 1994),

�(ri) ⌘ wtot(ri)[nqso(ri) � �nran(ri)]/I
1/2
2

. (8)

The quantity wtot is the total weight for the quasars at the grid
location given by Eq (5), nqso and nran are the number density at
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• “Foregrounds”
–i.e., the Milky Way
–Static (within 
measurement 
uncertainties)
–E.g., dust maps, 
stellar density maps
–Can be taken from 
one instrument and 
used for another

Imaging Systematics

Not isotropic: Planck at 353GHz
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• Data quality 
variations
✴requires metadata 
be recorded at time 
of observation
✴e.g., exposure 
time, PSF size, sky 
brightness, distance 
from moon,…

Imaging Systematics

SDSS DR7; Wang et al. (2013)
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• Calibration uncertainties
✴E.g., photometric calibration between two 
observations
✴Might require 0.1% level calibration for fNL 
(Huterer et al. 2013)
✴Forward model calibration? 

Imaging Systematics
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• Foregrounds
• Data quality variations
✴Record metadata

• Cross-correlate with 
data→correction

• Calibration uncertainties
✴Hope captured by metadata
✴(E.g., cumulative effect of 
errors in extinction 
coefficients should scale with 
dust map)

Map Based Approaches
10

FIG. 6. The significance of each systematic correlation. The significance is calculated by comparing the ��2 measured on the
data to the distribution in the mock realizations. We find the 68th percentile ��2 value, labeling it ��2(68), for each map
obtained from the mock realizations. We quote the significance for the relationship obtained on the data as ��2/��2(68).
Weights are applied for the SP map with the largest significance, with the caveat that we do not correct for both depth and the
components of depth (e.g. exposure time, PSF FWHM) in the same band. For example, in the bin 0.15 < z < 0.3, correcting
for r-band depth (the most significant contaminant) did not remove all the r-band correlations with ��2/��2(68) > 2, so is
not included in the final 2��2/��2(68) weights. This is repeated iteratively until all maps are below a threshold significance,
shown here for thresholds of 2��2/��2(68) and 3��2/��2(68). The x axis is shown in order of decreasing significance for the
unweighted sample. The labels in bold are the SP maps included in the 2��2/��2(68) weights. In the second redshift bin,
0.3 < z < 0.45, the 3��2/��2(68) and 2��2/��2(68) weights are the same because correcting for only g-band depth removes
all correlations with ��2/��2(68) > 2.

For depth and airmass, the function used was a lin-
ear fit in s. For exposure time and sky brightness, the
function was linear in

p
s, as this is how these quantities

enter the depth map. For the seeing correlations, we fit

the model

Ngal/hNgali = Fsys (sFWHM)

Fsys (sFWHM) = A


1� erf

✓
sFWHM � B

�

◆�
, (11)

where sFWHM is the seeing full-width half-max value, and
A, B and � are parameters to be fitted. This functional

DES Y1 Elvin-Poole et al. (2017)
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Map Based fNL Success
SDSS Quasars; Leistedt et al. (2014)

Applied extended mode projection to angular power spectrum measurements3

FIG. 2: Constraints on the quasar bias model described in
Eq. 4. The solid line shows the fiducial model with b0 = 1,� =
5, and the shaded bands show the 1� constraints (b0 = 0.96±
0.15, 68% CL, � and fNL marginalised) from the XDQSOz
power spectra when varying the bias and PNG parameters,
the shot noise, and the redshift distributions. The coloured
bands show the results when fixing � = 5 and allowing a
di↵erent bias amplitude in each redshift bin, to demonstrate
the ability of the overall model to simultaneously describe the
four samples.

A simple extension of the local model is the introduc-
tion of a spectral index nfNL in the fNL-generated scale-
dependent bias [30, 47–50], i.e., changing its scaling from
k�2 into k�2+nfNL by using

↵(k, z) ! ↵(k, z)

✓
k

kpiv

◆�nfNL

, (3)

where we choose kpiv = 0.06 Mpc�1. Note that this
parametrisation is not equivalent to an intrinsically scale-
dependent fNL as described in Refs. [51, 52]. Instead, it
allows us to extend our analysis to other types of PNG,
like that generated by single-field inflation with a mod-
ified initial state [48], or models with several light fields
[49].

The quasar bias is known to evolve strongly with red-
shift (e.g., Refs. [53–57]), and thus one cannot use a con-
stant linear bias per redshift bin due to the extended and
complicated redshift distributions shown in Fig. 1. For
the Gaussian bias b(z) in Eq. 2, we used

b(z) = b0

"
1 +

✓
1 + z

2.5

◆�
#
, (4)

which is in good agreement with previous studies of SDSS
quasars (e.g., Ref. [58–60]).

Monte Carlo Markov Chain (MCMC) analy-
sis. We built a Gaussian likelihood [34], jointly using
the 10 auto- and cross-angular power spectra (between
redshift bins) estimated in Ref. [35], at multipole reso-
lution �` = 15. The theoretical predictions were calcu-
lated using CAMB sources [61], modified to support PNG
and our quasar bias model. We used emcee [62] to run

FIG. 3: Constraints on local-type fNL (in the ⇤CDM+fNL

model, with nfNL = gNL = 0) using the power spectrum
analysis of XDQSOz quasars, for di↵erent bias models and
incorporating uncertainties in the redshift distributions and
cosmological parameters. The error bars show the 1 and 2�
constraints, the dashed line shows fNL = 0, and the shaded
bands show the constraints from Planck [13].

an MCMC analysis, and sample combinations of the fol-
lowing parameters: Cosmological parameters (‘cosmo’):
parameters of the base ⇤CDM model, with fiducial val-
ues and uncertainties corresponding to the constraints
from Planck combined with Baryon Acoustic Oscillations
(BAO), as in Ref. [63]. Bias model: the model described
above, with uniform priors b0 2 [0, 2] and � 2 [4, 6].
Redshift distributions (‘n(z)’): the amplitude and width
of the Gaussian functions used to fit the n(z) estimates,
with Gaussian priors of 5% 1� uncertainties around the
fiducial values. Additionally, we sampled the slope of
number counts, which controls magnification bias, with
Gaussian priors centred at the measured value with 5%
1� uncertainty. Shot noise: we marginalised over the
shot noise with a prior [0.8, 1.0] times the value measured
from the photometric quasar surface density, in order to
account for the unknown (but bounded) amount of stellar
contamination.

Results. We first test the robustness of the bias model
by examining the bias measured in the four redshift sam-
ples individually and jointly. Therefore, in addition to
the ‘coupled’ model presented above, used to connect all
power spectra to the theory predictions, we consider an
alternative, ‘decoupled’ case where the bias amplitude
of each redshift sample is fit separately, using four pa-
rameters b1, b2, b3, b4. In this case, we used � = 5 and
uniform priors bi 2 [0, 2]. The constraints on the bias
parameters from the XDQSOz power spectra are shown
in Fig. 2, and demonstrate that the separate bias am-
plitudes bi, i = 1 . . . 4 of the four samples are in good
agreement with each other, with the fiducial model with
b0 = 1 and � = 5 (black line), and also with the results
obtained with the coupled model (shaded band). Note
that the slope parameter � is used to capture the un-
certainty in the evolution of the bias at z > 2.5. This
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• Clustering modes are 
removed by these 
methods

• Need to be careful, show 
that method is unbiased 
for *model* it is testing

• Elsner et al. (2016), Kalus 
et al. (2016)

• Rezie et al. (in prep.): use 
proper machine learning 
techniques

Details Matter
Systematic analysis of BOSS 3D clustering 589

A P P E N D I X A : A N G U L A R W E I G H T I N G
SCHEMES

We considered three different weighting schemes in order to account
for the systematic correlations found in Section 5. These included:

(i) ‘Iterative weights’ which we denote wit. This technique was
applied in Ross et al. (2011b). It assumes that the effects of each
systematic are separable, and proceeds by starting with one sys-
tematic and setting the weight in every HEALPIX pixel equal to the
inverse of the quantity plotted in black in Fig. 11. One then moves
on to the next systematic and recalculates the relationship between
the number density of galaxies and the systematic, and then mul-
tiplies the weights by the inverse of the relationship. If the effects
are indeed separable, the ngal(sys) relationships should all remain
consistent with unity after all of the weights have been calculated.

To determine wit, we proceed in the order stellar density, Galac-
tic extinction, airmass, seeing and sky background. If each is truly
separable, the order should not matter, and we do find negligible
differences for any permutation of the order we have tested. The
residual relationships between the galaxy number density and the
potential systematic, when weighting by the full wit, are displayed
with magenta lines in Fig. A1. In every case, the relationship is
almost fully removed. This implies that the weighting is too aggres-
sive, as we should actually expect variations consistent with the size
of the error bars in Fig. A1.
We can test the extent to which the wit weights may remove true
power from clustering measurements by applying weights to each
mock sample (which of course contain no imaging systematics)
following the methods we apply to the data. The black triangles
in Fig. A2 display the average difference between the fiducial ξ

measurements and when the full iterative weights, wit, are calculated
and applied to each mock. For the monopole, this decreases the
expected result by about half the statistical uncertainty (displayed
with the black dotted lines). There is also a non-zero bias for the
ξ 2 measurements (top panel), but the difference is insignificant
compared to the statistical uncertainty.

(ii) ‘Linear-fit MCMC weights’ , which we denote wMCMC. These
weights are calculated by using a Monte Carlo Markov chain
(MCMC) to simultaneously find the linear coefficients that best
describe the total ng(nsys) relationships.

The wMCMC weights are determined by finding the best-fitting
solution to

Figure A2. The average difference between the fiducial redshift-space cor-
relation function of the mocks, ξ , and that using weights for each mock
using the full iterative method (black triangles wit), and that using weights
for each mock using only a linear fit to the relationship with stellar den-
sity (red circles, wstar). Error bars represent the standard deviation of the
difference. The black dotted lines display the variance on ξ found in the
mocks. We note that the mocks do not require weights – a deviation from
zero implies that a bias is imparted by the weight scheme.

ngal/nran = K + Anstar + BAr + Cseei + Dskyi + Eair (A1)

where K, A, B, C, D and E are the coefficients we fit for and see
is the seeing, sky is the sky background and air is the airmass. This
is solved efficiently using an MCMC, as coefficients can be applied
to the HEALPIX map simultaneously (thereby accounting for any co-
variances between the potential systematics). The value of wMCMC

is then the inverse of the best-fitting relationship. The residual rela-
tionships after applying the wMCMC weights are displayed in blue in
Fig. A1. These weights allow more variation than the wit weights.
However, the sum of (ξ p,x(reff )2/ξ p(reff ) over all five potential sys-
tematics for CMASS galaxies with the wMCMC weights, displayed
in blue in Fig. 13, is substantially smaller than we expect from the

Figure A1. Same as Fig. 11, except we now plot the residual relationships after applying iterative weights (magenta; wit), the residual relationships after using
an MCMC to simultaneously fit linear relationships in order to determine the weights (blue; wMCMC) and the residual when the weights are split as a function
of the fibre magnitude, but calculated only based on stellar density (red; wstar).

C⃝ 2012 The Authors, MNRAS 424, 564–590
Monthly Notices of the Royal Astronomical Society C⃝ 2012 RAS

BOSS DR9 Ross et al. (2012)
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• Inject galaxies into images, perform selection
• Removes need for most metadata, some foregrounds
• Requires representative input sample
• DES, “Balrog”, Suchyta et al. (2016); DESI, “Obiwan”, Burleigh 

et al. (in prep.)
• Could include calibration uncertainties?

Forward Model Approach

No galaxy left behind: accurate measurements with the faintest objects in the Dark Energy Survey 7
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Figure 3. Map (declination vs. right ascension) of the density of detected DES (left) and Balrog galaxies (right) on the SPT-E footprint used in this analysis.
While the two maps are very similar, there is an excess in counts in DES data at declination � < �58; this is due to increased stellar contamination caused by
the nearby LMC. Our Balrog run has made no attempt to model anisotropic stellar counts.

objects common to multiple exposures and (2) any DES objects that
match to SDSS standards.

DESDM builds coadds of the single-epoch images with
SWarp (Bertin et al. 2002), using the discussed astrometric so-
lutions and photometric calibrations as input. Each coadd image,
known as a tile, is ⇠ 0.5 deg2 in area. SWarp computes the e↵ec-
tive gain noise level of each tile as well as the combined inverse-
variance weight map. PSFEx (Bertin 2011) is then run over the
coadds to fit the PSF model, using a second-degree polynomial for
interpolation over the tile. Finally, DESDM runs SExtractor in
dual-image mode, using a multi-band riz image for detection, to
produce the catalogs of DES objects.

The SV photometric calibration for the coadds was supple-
mented with stellar-locus regression (SLR), which uses the near
universality of the colors of Milky Way halo stars as a means to fit
for photometric zeropoints (e.g. High et al. 2009). Our SLR correc-
tions (Ryko↵ et al. in prep.) were implemented with a modified ver-
sion of the big-macs stellar-locus fitting code (Kelly et al. 2014).
All corrections were made relative to an empirical reference locus
derived from calibrated standard stars observed on a photometric
night. We recompute coadd zeropoints over the full SV footprint on
a HEALPix (Górski et al. 2005) grid of NSIDE = 256, using bilin-
ear interpolation to correct all objects in the catalog at a scale of
better than ⇠140. We use J band magnitudes from the Two Micron
All Sky Survey (2MASS) stellar catalog (Skrutskie et al. 2006) as
an absolute calibration reference, which yields absolute calibration
uniformity of better than 2%, with color uniformity ⇠1%.

3.3 Running Balrog

The input we give to Balrog is made up of the data products
discussed in the previous section: the coadded SV images from
DESDM, as well as their inverse-variance weight maps, PSF mod-
els, astrometry, photometric zeropoints, and e↵ective gains. We
self-consistently add the same Balrog objects to the g, r, i, and
z images, build an riz detection image for each realization us-
ing identical SWarp configuration as DESDM, and then run Bal-
rog over each band with SExtractor configurations, which again
match those of DESDM.

We make use of the SLR o↵sets introduced in Section 3.2 in

our imaging simulations. We employ Balrog’s user-defined func-
tion API to read the SLR zeropoints and make position-dependent
modifications to the simulated fluxes in each image, in addition the
usual single zeropoint used by Balrog. This takes an input truth
magnitude and adjusts it back to the pre-SLR flux scale, i.e. the
original calibration for the coadd images.

In each Balrog realization we add only 1, 000 objects to the
image (of area ⇠ 0.5 deg2), in order to keep the Balrog-Balrog
blending rate low. We iterate each coadd tile 100 times, simu-
lating a total of 100,000 objects per DES coadd tile. Combining
the results generates a Balrog output measurement catalog which
is approximately the same size as the DES measurement catalog.
The total run time for our Balrog simulations was approximately
30, 000 CPU-hrs, much less than the time needed by DESDM to
process the data.

Admittedly, injecting our Balrog objects directly into the
coadds instead of self-consistently into each overlapping single-
epoch image is less ideal. For example, the coadd PSF is not as reli-
able of a model of the data as is simultaneously using the full set of
single-epoch PSFs. However, the single-epoch version of Balrog is
roughly ten times more computationally expensive, and we opt to
test the simpler approach first. Using Balrog in other DES analyses
which are more sensitive to the PSF and which directly use single-
epoch level information (such as weak lensing ones) will require
running on all the single-epoch images. In this work, our measure-
ments are focused on galaxy clustering, and we demonstrate that
the coadd approximation is su�cient in this context.

3.4 Catalog selection

To construct the DES sample, we download the SV coadd data from
the DESDM database of SExtractor measurements, returning de-
tections from the same areas where Balrog was run. We then apply
the SLR zeropoint shifts to both the DES and the Balrog catalogs.
At this point, the full Balrog and DES catalogs total ⇠ 16 million
detections each.

Next, we apply some quality cuts to both samples. In Sec-
tion 5, we undertake galaxy clustering measurements, and the qual-
ity cuts we make are similar to ones made in the benchmark DES
clustering analysis of Crocce et al. (2015). We base our cuts on a

© 0000 RAS, MNRAS 000, 000–000

Suchyta et al. (2016)
Balrog input is constant
Output gives selection function
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• calibration and data 
quality concerns 
(mostly) drop out

Cross-correlations
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FIG. 13. Marginalized posterior probability distributions for
fNL versus Ωm,σ8 for different data sets. The näıve result
obtained using the complete data set (red contours, at 68
and 95% c.l.), which would suggest the presence of signifi-
cant PNG, is not stable. When using only the most reliable
parts of our compilation, we obtain the conservative result
(green), which remains stable when adding back most of the
data (blue), except the quasar and NVSS ACFs. As these
are the least reliable data, as we discussed in our systematic
section, we decide to discard them.

ering the ‘näıve’ data set we found that, perhaps surpris-
ingly, there is no significant degeneracy with the quasars’
κ, while the degeneracy with b0 is more pronounced: by
raising it to b0 ≃ 1, values as low as fNL ≃ 30 are al-
lowed. When using the quasars’ ACF however, the Gaus-
sian limit is always excluded at > 2σ. We found that a
stronger degeneracy between κ and fNL is present only
when using the quasar ACF alone. When using the ‘con-
servative’ data set, we found that the fNL − bQSO

0 degen-
eracy is significantly moderated.

We summarize the constraints on fNL in Table III and
in Fig. 14 for clarity. Here we compare the marginal-
ized results obtained when using the most constrain-
ing parts of our data set. We can see once again

Data fNL 95% interval
Conservative −36 < fNL < 45

Fair −15 < fNL < 68
Näıve 31 < fNL < 64

Conservative; with βij , σ
max
β = ln 2 −36 < fNL < 42

Conservative; with βij , σ
max
β = ln 4 −36 < fNL < 42

LRG-LRG −116 < fNL < 91
NVSS-NVSS 140 < fNL < 245
QSO-QSO −13 < fNL < 91

TABLE III. Summary of the fNL constraints. In the top sec-
tion we show the results from the combined analyses. The
two runs with the nuisance parameters βij have two different
choices for their Gaussian priors. The runs with a single ACF
below include marginalizations over one bias parameter and
(for the SDSS catalogs) one stellar contamination parameter.

FIG. 14. Comparison of the marginalized posterior probabil-
ity distribution on fNL using the parts of our data set giving
the strongest contributions. We show the results from sin-
gle cross-correlation functions (top, green), auto-correlations
(center, blue), and from combined sub-samples of the whole
data set (bottom, red). The lines correspond to 68 and 95%
ranges, have been marginalized over the cosmological param-
eters, and include the WMAP7 CMB priors. The points
represent the mean values of the posterior likelihoods. The
results from single auto-correlation functions have also been
marginalized over one bias parameter and one stellar contam-
ination fraction (for the SDSS samples). The NVSS ACF
result is inconsistent with the rest, but is discarded due to
the high level of systematics. To best present the relative
constraining power of the cross-correlation measurements, we
have placed priors on the bias and stellar contamination pa-
rameters, which significantly overstate the constraints these
cross-correlation allow on their own. See the main text for
more details.

Giannantonio et al. 2014
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• LSST, with current techniques, how about:
✴N galaxy count maps to i~24, separate 
calibration, cross-correlated against each other
✴Supported by image simulations
✴Mode projection for foregrounds
✴Test mode projection with meta-data for 
robustness
✴DESIxLSST, EuclidxLSST, eventually, 
LSSTxSKA, …

Future
April 20th 2018                                 SCLSS



• Treat each biased 
sample like we treat 
frequency bands in 
CMB?

• Or maybe do 
template search? (Or 
both)

Extending multi-tracer
Primordial non-Gaussianities and zero bias tracers of the Large Scale Structure

Emanuele Castorina,1, 2 Yu Feng,1, 2 Uroš Seljak,1, 2 and Francisco Villaescusa-Navarro3

1Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720
2Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 93720, USA

3Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, 10010, New York, NY, USA

We develop a new method to constraint primordial non-Gaussianities of the local kind using
unclustered tracers of the Large Scale Structure. We show that in the limit of low noise, zero bias
tracers yield large improvement over standard methods, mostly due to vanishing sampling variance.
We propose a simple technique to construct such a tracer, using environmental information obtained
from the original sample, and validate our method with N-body simulations. Our results indicate
that �f loc

NL
' 1 can be reached using only information on a single tracer of su�ciently high number

density.

I. INTRODUCTION

Understanding the initial conditions of the Universe
is major open problem in theoretical cosmology. The
statistical properties of the primordial curvature per-
turbations are a key ingredient of the success of the
⇤CDM model to explain the Universe as we observe it
today. In the simplest models of inflation[1–3], slow-
roll single field inflation, initial fluctuations are Guas-
sian for all practical purposes[4–6], but current obser-
vations still allow a large variety of models predicting
large Primordial Non-Gaussianities (PNG). This would
be for instance the case if cosmological perturbations
are not generated by the inflationary clock driving in-
flation, but rather by other fields[7–11]. This class of
models often goes under the name of multi-field infla-
tion. PNG contributing mostly to squeezed configura-
tions of the primordial curvature bispectrum are called
of the local kind. In terms of the primordial gravitational
potential �(x), they can be parametrized with a single
number f loc

NL, �(x) = �g(x) + f
loc
NL(�g(x)2 �

⌦
�
2
g

↵
), with

�g a Gaussian random field.
A general prediction of multi-field models is |f loc

NL| &
1 [12], therefore setting the value of �f loc

NL
we want to

achieve with probes on local PNG. A significant detection
of f loc

NL will automatically rule out all single field models,
whereas �(f loc

NL)  1 will exclude a large number of multi-
field scenarios. Measurements of the Cosmic Microwave
Background (CMB) by the Planck satellite have put the
tightest constraints on local PNG[13], f loc

NL = �0.8 ± 5.
Unfortunately we have mostly saturated the information
content in the CMB, and any further improvement will
come from the late time distribution of galaxies or any
other tracers of the Large Scale Structure (LSS) of the
Universe. The scope of this work is to present a novel
way to estimate PNG using galaxy positions.

PNG a↵ect the dark matter distribution at the late
times in multiple ways, from the abundance of massive
clusters to the clustering of galaxies nth-point functions,
see [12, 14, 15] and references therein for a review. Next
generation of galaxy surveys are expected to improve the
errorbars on local PNG, DESI [16] and Euclid [17] should
get down to �f loc

NL
' 5 using power spectrum measure-

ments, and a combination of power spectrum and bispec-
trum in optical surveys could achieve �f loc

NL
' 1 [18, 19].

Recently [20] has also shown that a combination of LSST
galaxies with CMB data has similar constraining power
on PNG. For PNG constraint with intensity lines surveys
using CO and CII emission lines see instead [21].
Most of the aforementioned analyses rely on the unique

signature of PNG in the LSS represented by the scale
dependent linear bias[22–24]. In the presence of local
PNG the relation between the galaxy and the underlying
dark matter field receive a contribution on large scales
absent in a Gaussian Universe

�g = bg�m , bg = b1 + f
loc
NLb�↵(k) (1)

where the new bias parameter can be related to the log-
arithmic derivative of the galaxy number density with
respect to �8, the variance of the linear power spectrum
on 8h�1 Mpc scale, via [23]

b� =
d log n̄

d log �8
. (2)

Notice that b� is independent of scale. We have also de-
fined the following transfer function from the primordial
potential to the density field,

↵(k) =
3⌦mH

2
0

c2k2T (k)D(z)
(3)

with c the speed of light, H0 the present day Hubble
constant, T (k) the matter linear transfer function and
D(z) the linear growth factor normalized to 1/(1 + z)
in the matter dominated area. The non-Gaussian cor-
rection is generated by the coupling between long and
short scales generated during inflation, that modulates
the mean number density of galaxies as a function of the
long-wavelength modes. Since at low k the transfer func-
tion goes to unity one expects the non-Gaussian signal
on large scale to go as k�2. Equation 1 has been exten-
sively tested in numerical simulations, and overall good
agreement is found with analytical calculations[25–27].
A further simplification is usually made in Equation 1,
that the mass function is universal, i.e. d log n̄/d log �8 =
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• Surveys getting larger mean we get to measure 
new, larger scales

• We know how to model large-scales (?…GR 
effects, magnification, neutrino mass 
splitting…)

• Systematics are tricky, but surely not as bad as 
shear

• Let’s try to have a better understanding of why 
anything exists

Conclusion
April 20th 2018                                 SCLSS



BOSS imaging systematics

fiducial
full weights

Ross et al. 2011
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BOSS imaging systematics

fiducial
full weights

Ross et al. 2011
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Galaxies around stars 17.5 < i < 
19.9 (23 million stars)
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Stars Occult Area
Ross et al. 2011
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Stars and BOSS Surface Brightness

• Spectroscopic results confirm 
galaxy vs. stellar density 
relationship

• Depends on surface brightness
• Corrected with weights based 

on linear fits

Ross et al. 2012

brightest

faintest

(DR9 data)
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Systematics in final data setBOSS galaxy correlation functions and BAO Measurements 7

Figure 3. Projected BOSS galaxy density versus stellar density, measured
as the number of 17.5 < i < 19.9 stars in Healpix pixels with Nside=128.
Top panel: the relationships for CMASS and the three LOWZ selections.
Middle panel: The relationships for CMASS, split into bins of ifib2 magni-
tude. These are the measurements used to define the stellar density weights
applied to clustering measurements. Bottom panel: The relationships for
CMASS, split by redshift, before (curves) and after (points with error-bars)
stellar density weights are applied. The relationships before any weighting
is applied are slightly dependent on redshift, due to a weak correlation be-
tween ifib2 and redshift. Weighting based on ifib2 (illustrated in the middle
panel) removes this dependency.

ifib2 bin; the �
2 of the fits range between 4 and 8, for 8 de-

grees of freedom. With increasing ifib2, the best-fit A and B are
A(ifib2) = [0.959, 0.994, 1.038, 1.087, 1.120] and B(ifib2) =
[0.826, 0.149,�0.782,�1.83,�2.52]⇥ 10�4.

The linear fits to the relationship between galaxy and stellar
density in each of the ifib2 bins are used to define weights to apply
to CMASS galaxies to correct for the systematic dependency on

stellar density. To obtain the expected relationship at any ifib2, we
interpolate between the results in the neighboring ifib2 bins, i.e.,
to find the expected relationship at ifib2 = 20.8, we interpolate
between the results in the 20.3 < ifib2 < 20.6 and 20.6 < ifib2 <

20.9 bins to obtain the slope, B(ifib2), and intercept, A(ifib2), of
the relationship. The weight we apply to the galaxy is then

wstar(nstar, ifib2) = (B(ifib2)nstar + A(ifib2))
�1

, (32)

i.e., we simply weight by the inverse of the expected systematic
relationship.

The surface brightness dependence of the stellar density rela-
tionship must be accounted for in order to account for the redshift
dependence of the systematic effect. The bottom panel of Fig. 3
shows the CMASS number density vs. stellar density, after apply-
ing wstar. In each redshift bin, the systematic relationship is re-
moved. After applying the systematic weights, the �

2 for the null
test are 13.5, 8.4, and 11.2 (for 10 degrees of freedom), with in-
creasing redshift; prior to applying the weights, they are 47, 117,
and 65. The impact of the stellar density weights on the measured
clustering is presented in Section 5.1.

4.2 Seeing

There is a relationship between the observed density of BOSS
CMASS galaxies and the local seeing due to the star galaxy sep-
aration cuts, as explained in Ross et al. (2011). Weights were previ-
ously defined and applied to the DR10 and DR11 CMASS samples
to remove this trend, and we repeat such a procedure for DR12,
while further investigating any relationship in the LOWZ samples.

The top panel of Fig. 4 displays the relationship between ob-
served projected density and seeing for different BOSS selections.
For the standard LOWZ selection and the LOWZE2 selection, no
strong relationship is observed; the �

2 values of the null tests
are 16.2 and 14.2, respectively, for 10 degrees of freedom. How-
ever, for CMASS and especially LOWZE3, clear relationships exist
where the galaxy density decreases as the seeing gets worse (the �

2

values of the null tests are 225 and 877). For each sample, we will
define systematic weights to correct for these relationships, and we
describe this process throughout the rest of this section..

For CMASS, we define weights in a manner similar to that
applied in Anderson et al. (2014b). We find the relationship with
seeing is more severe in the SGC compared to the NGC, and we
therefore determine the weights separately in each region6. We find
the best-fit parameters to the following model

ng = Asee


1� erf

✓
Si � Bsee

�see

◆�
, (33)

where Si denotes the i-band seeing. The middle panel of Fig.
4 displays the observed relationships for the data in each hemi-
sphere and the best-fit model. For the NGC (SGC), the best-fit pa-
rameters are Asee = 0.5205(0.5344), Bsee = 2.844(2.267),and
�see = 1.236(0.906). The �

2 of these best-fit are 5.4 and 6.9 for
the NGC and SGC, to be compared to 7 degrees of freedom. The
seeing-dependent weights are simply given by the inverses of the
best-fit relationships. The combined SGC+NGC relationship, after
applying the seeing-dependent weights, is displayed using a solid

6 The difference in this dependency with seeing between the two regions
must be related to another variable that differs considerably between the two
regions, but a thorough investigation was unable to determine this variable.

MNRAS 000, 1–24 (2014)

Ross et al. (2016)

8 A. J. Ross et al.

Figure 4. The relationship between observed density of BOSS galax-
ies and i-band seeing. Top panel: The relationships for CMASS and the
three LOWZ selections. Middle panel: The relationships for CMASS NGC
and SGC. The dashed curves display the best-fit relationship used to de-
fine the weights that correct for the observed trends. The solid curve dis-
plays the measured relationship for the combined NGC+SGC sample, af-
ter the weights have been applied. Bottom panel: The relationships for the
LOWZE3 sample, split into four bins by imod magnitude. These relation-
ships are used to define the weights applied the LOWZE3 sample.

black curve. The error-bars are suppressed, but the �
2 of the null

test is 7.7 for 10 data points.
For LOWZE3, the inclusion of the z-band star/galaxy separa-

tion cut introduces a strong relationship between the galaxy density
and the seeing. We find the effect is strongly magnitude dependent
(we do not find this to be the case for the dependence of the CMASS

sample with seeing). We therefore divide the sample by imod mag-
nitude (i- and z-band magnitudes are strongly correlated at these
redshifts and the SDSS i-band is less prone to zero-point fluctua-
tions) and define weights in a manner analogous to how we defined
the CMASS stellar density weights as a function of ifib2. We divide
the LOWZE3 sample into four bins based on the galaxies’ imod

magnitude, imod < 17.5, 17.5 < imod < 18, 18 < imod < 18.5,
and imod > 18.5, and fit a linear relationship to each and then in-
terpolate to obtain the weight as a function of the local i-band see-
ing and the galaxy’s imod magnitude. The measurement in these
four magnitude bins is displayed by the points with error-bars in
the bottom panel of Fig. 4. The dashed curves display the best-fit
linear relationship to each. We find the slope of the best-fits, `, is
well-approximated by

` = b + m(imod � 16)
1
2 , (34)

with b = 0.875 and m = �2.226. Thus, given that the mean seeing
over the footprint is 1.25, the relationship between i band seeing,
LOWZE3 density (nLE3), and imod is given by

nLE3(Si, imod) = 1 + (Si � 1.25)`(imod). (35)

We set any ` < �2 to `min = �2 and take the the inverse of
equation (35) the in order to apply weights to the LOWZE3 sample,
setting any weights greater than 5 to 5.

The total systematic weight (e.g., wstar⇥wsee for CMASS) is
normalized such that the weights sum to the total number of galax-
ies in the sample they are defined for. The impact of the seeing
weights we apply on the measured clustering of the CMASS and
LOWZE3 samples is presented in Section 5.1.

4.3 Sky background, Airmass, Extinction

As for previous BOSS data releases, we test against three additional
potential systematic quantities, each of which affects the depth of
the imaging data: sky background, airmass, and Galactic extinction.
These are shown for the CMASS and LOWZ samples in Fig. 5.
For sky-background and airmass, the �

2 values of the null tests
range between 9 (for CMASS against sky background) and 18 (for
LOWZ against airmass), to be compared to the 10 data points in
each case.

For Galactic extinction, the �
2 are somewhat larger than ex-

pected: 35 for the CMASS sample and 26 for LOWZ (compared to
10 data points). However, these large �

2 are dominated by the value
at the lowest extinction, which is low by 3 per cent for both LOWZ
and CMASS7. Schlafly & Finkbeiner (2011) suggest somewhat
different extinction coefficients than those used to target BOSS
galaxies. Such a change implies extinction-dependent shifts in the
color of the BOSS selection and these shifts can be translated into
an expected change in target density as a function of extinction.
The expected trend is shown with dashed lines and agrees with the
overall trend observed for both LOWZ and CMASS. In terms of �

2,
the LOWZ value is 19 when using this prediction and the CMASS
value remains 35 (improvement at the extrema of the range is coun-
tered by disagreement at E(B-V)⇠0.08). This implies any effect on
the measured clustering found when correcting for this predicted
relationship would be marginal, and, indeed, we find no significant

7 Masking the data at the lowest extinction values does not cause any sig-
nificant change in the clustering results.

MNRAS 000, 1–24 (2014)

• Stellar density effect 
remains strong

• Significant effect with 
seeing due to 
morphological star/
galaxy separation cuts
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Figure 5. The relationship between galaxy density observed density and sky
background (in nanomaggies per square arc second), Galactic extinction (in
E(B-V)), and airmass, for CMASS and LOWZ. The dashed lines display
the predicted relationship with Galactic extinction, based on the difference
between the extinction coefficients applied to BOSS imaging data and those
found in Schlafly & Finkbeiner (2011).

changes in the measured clustering when applying and extinction-
dependent weights. We thus choose not to include any weights to
correct for these trends with Galactic extinction.

Overall, we do not find any clear trends, given the uncertainty,
between the density of BOSS galaxies and sky background, Galac-
tic extinction, or airmass. Therefore, like in previous BOSS anal-
yses, we do not weight BOSS galaxies according to any of these
quantities. It would be prudent for any future studies of the cluster-
ing of BOSS galaxies at the largest scales to reconsider this choice.

5 BOSS GALAXY CLUSTERING

In this section, we present the configuration-space clustering of
BOSS galaxies. We determine the relative importance of the sys-
tematic weights we apply, in terms of the impact on the measured
correlation functions. We then show BOSS clustering results when
the samples are divided by hemisphere (NGC and SGC) and by tar-
geting selection (LOWZ, LOWZE2, LOWZE3, and CMASS). We
conclude by showing the clustering of the combined BOSS sample,
split by redshift.

5.1 Effect of weights

The CMASS sample contains the most signal-to-noise of any par-
ticular BOSS selection, has a significant percentage of unobserved
close-pairs and redshift failures (5.4 and 1.8 per cent), and uses
weights for both stellar density and seeing to correct for system-
atic dependencies in the observed number density. We test the im-
pact of these weights by comparing the clustering measured with
the weights applied to that without. For the monopole, these differ-
ences are displayed in the top panel of Fig. 6. In order to assess the
total potential impact of the weights, we find the total �

2 difference
between the clustering measured with and without the weights. The
relative importance of each weight is as one would expect visually:
the �

2 are 13.1, 3.7, 2.1, and 0.1 for stellar density, close pair, red-
shift failure, and seeing weights.

The importance of the weights is smaller for CMASS ⇠2 than
⇠0, as one can see in the 2nd to the top panel in Fig. 6. The �

2 are
0.5, 2.5, 2.3, and 0.1 for stellar density, close pair, redshift failure,
and seeing weights. Unsurprisingly, the weights that affect the ra-
dial distribution are most important for ⇠2, and the redshift failure

Figure 6. The change in the measured monopole and quadrupole of the
BOSS CMASS (top panels) and LOWZ (bottom panels) correlation func-
tions, when the given systematic weight is applied. ‘LOWZ comb’ refers
to the combination of the LOWZ, LOWZE2, and LOWZE3 selections. The
grey shaded region displays the 1� uncertainty obtained from mock sam-
ples.

MNRAS 000, 1–24 (2014)
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conclude by showing the clustering of the combined BOSS sample,
split by redshift.
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ticular BOSS selection, has a significant percentage of unobserved
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Figure 6. The change in the measured monopole and quadrupole of the
BOSS CMASS (top panels) and LOWZ (bottom panels) correlation func-
tions, when the given systematic weight is applied. ‘LOWZ comb’ refers
to the combination of the LOWZ, LOWZE2, and LOWZE3 selections. The
grey shaded region displays the 1� uncertainty obtained from mock sam-
ples.
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• Only stellar density 
has strong effect 
over full footprint

• (LOWZE3 result is 
over full footprint, 
but it is only 660 
deg2 in combined)

• Simulating effects 
yield no bias in 
BAO, negligible 
effect on statistical 
uncertainty

Systematics in final data set
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