Measuring Galaxy Clustering on Gigaparsec Scales

Ashley J. Ross (plus many of you in the room)

SCLSS

Outline

- Motivation
 - Primordial potential
- Challenges
 - Observational systematics

SCLSS

Gigaparsec Scales

- $(P(k)/\sigma_P)^2 \sim k^3 V_{\text{survey}}/(4\pi^2)$
- ~ I at $k = I h \text{Gpc}^{-1}$ for 20 (Gpc/h)³
- DESI > 28 (Gpc/h)³ with nP > 1 at k = 0.14 $hMpc^{-1}$ (140 $hGpc^{-1}$)

SCLSS

Gigaparsec Scales

- $(P(k)/\sigma_P)^2 \sim k^3 V_{\text{survey}}/(4\pi^2)$
- ~ I at $k = I h \text{Gpc}^{-1}$ for 20 (Gpc/h)³
- DESI > 28 (Gpc/h)³ with nP > 1 at k = 0.14 $hMpc^{-1}$ (140 $hGpc^{-1}$)

SCLSS

Motivation: Primordial Potential
Two orders of magnitude of ~linear information
linear matter P(k) -> primordial P(k)

DESI forecasts

Data	$\sigma_{n_{ m s}}$	$\sigma_{lpha_{ m s}}$
$Gal (k_{\rm max} = 0.1 h \mathrm{Mpc}^{-1})$	0.0025~(1.3)	0.005~(1)
Gal $(k_{\rm max} = 0.2h{\rm Mpc}^{-1})$	0.0022 (1.5)	0.004(1.3)
Ly- α forest	0.0029(1.1)	0.0027~(1.9)
Ly- α forest + Gal ($k_{\text{max}} = 0.2$)	0.0019(1.7)	0.0019(2.7)

() denotes gain over Planck

biased power spectrum → primordial non-Gaussianity

local f_{NL}

- Amount of non-Gaussianity in primordial field in squeezed k-space triangle configurations
- Introduces coupling between short and long wavelength modes
- And thus scale dependent bias for biased tracers with k⁻² dependence

Inflation

- Crazy
- (Some debate remains)
- Seeds all structure formation
- Generic slow-roll model predicts local $f_{NL} < 1$
- Upcoming galaxy/Ly-α surveys for n_s, its running, and non-Gaussianity
 - *Any model (inflation or otherwise) needs to predict these

(some) local f_{NL} measurements pre-Planck

- 21±25 (SDSS; Slosar et al. 2008)
- 51±30 (WMAP5; Komatsu et al. 2009)
- 48±20 (NVSS+SDSS; Xia et al. 2011)
- 37±20 (WMAP9; Hinshaw et al. 2013)
- 5±21 (NVSS+SDSS+ISW; Giannantonio et al. 2014)
- Planck 2013
 - 2.7±5.8 (2015; 2.5±5.7)
- -9±20 (SDSS Quasars; Leistedt et al. 2014)

Future f_{NL} measurements

SCLSS

Available Volume

Motivation: bottom-line

- Universe contains the information to precisely constrain primordial potential
- Combination of large-scale structure and CMB polarization:

 $*n_s$ and its running, amplitude of tensor modes, degree of non-Gaussianity

Can hopefully prove inflation and pin-down specific models!

SCLSS

Challenges

SCLSS

Observational Systematics

BOSS DR9 CMASS galaxies

SCLSS

Observational Systematics: fNL

SCLSS

BAO Don't Budge BOSS galaxies (Ross et al. 2017), Ly-α forest (Bautista et al. 2017), quasars, DES photozs...

SCLSS

Imaging Systematics • "Foregrounds" Not isotropic: Planck at 353GHz -i.e., the Milky Way -Static (within measurement uncertainties) -E.g., dust maps, stellar density maps -Can be taken from one instrument and used for another

Imaging Systematics

Data quality variations *requires metadata be recorded at time of observation *e.g., exposure time, PSF size, sky brightness, distance from moon,...

SDSS DR7; Wang et al. (2013)

Imaging Systematics

Calibration uncertainties

*E.g., photometric calibration between two observations

- *Might require 0.1% level calibration for f_{NL} (Huterer et al. 2013)
- *Forward model calibration?

SCLSS

Map Based Approaches

- Foregrounds
- Data quality variations
 *Record metadata
- Cross-correlate with data→correction
- Calibration uncertainties
 *Hope captured by metadata
 *(E.g., cumulative effect of errors in extinction coefficients should scale with dust map)

SCLSS

Map Based f_{NL} Success

SDSS Quasars; Leistedt et al. (2014)

Applied extended mode projection to angular power spectrum measurements

SCLSS

Details Matter

- Clustering modes are removed by these methods
- Need to be careful, show that method is unbiased for *model* it is testing
- Elsner et al. (2016), Kalus et al. (2016)
- Rezie et al. (in prep.): use proper machine learning techniques

SCLSS

Forward Model Approach

- Inject galaxies into images, perform selection
- Removes need for most metadata, some foregrounds
- Requires representative input sample
- DES, "Balrog", Suchyta et al. (2016); DESI, "Obiwan", Burleigh et al. (in prep.)
- Could include calibration uncertainties?

Future

 LSST, with current techniques, how about: *N galaxy count maps to i~24, separate calibration, cross-correlated against each other *Supported by image simulations *Mode projection for foregrounds *Test mode projection with meta-data for robustness *DESIxLSST, EuclidxLSST, eventually, LSST_xSKA,...

SCLSS

Extending multi-tracer

Primordial non-Gaussianities and zero bias tracers of the Large Scale Structure

Emanuele Castorina,^{1,2} Yu Feng,^{1,2} Uroš Seljak,^{1,2} and Francisco Villaescusa-Navarro³

- Treat each biased sample like we treat frequency bands in CMB?
- Or maybe do template search? (Or both)

Conclusion

- Surveys getting larger mean we get to measure new, larger scales
- We know how to model large-scales (?...GR effects, magnification, neutrino mass splitting...)
- Systematics are tricky, but surely not as bad as shear
- Let's try to have a better understanding of why anything exists

SCLSS

BOSS imaging systematics

SCLSS

BOSS imaging systematics

SCLSS

Stars Occult Area

SCLSS

Stars and BOSS Surface Brightness

- Spectroscopic results confirm galaxy vs. stellar density relationship
- Depends on surface brightness
- Corrected with weights based on linear fits

SCLSS

Systematics in final data set

- Stellar density effect remains strong
- Significant effect with seeing due to morphological star/ galaxy separation cuts

SCLSS

Systematics in final data set

•• ••••••••••

Only stellar density has strong effect over full footprint (LOWZE3 result is over full footprint, but it is only 660 deg² in combined) Simulating effects yield no bias in BAO, negligible effect on statistical uncertainty