

Machine Learning Dark Matter Halo Formation

Luisa Lucie-Smith

University College London

with H.V. Peiris, A. Pontzen, M. Lochner

arXiv:1802.04271

A machine learning approach

Train a machine learning algorithm to learn cosmological structure formation from N-body simulations.

Aim: gain insights into the physics driving halo formation

Supervised classification

Which aspects of early-Universe density field contain relevant information to predict dark matter halo formation?

Training the machine learning algorithm

1. Machine learning input:

Given a sphere of mass scale M_i centred on particle p, calculate:

- Density contrast (motivated by extended Press-Schechter theory)
- Tidal shear tensor (motivated by Sheth-Tormen theory)

Do the same procedure for 50 mass scales.

2. Machine learning output:

- 1. IN halos of mass, $10^{12}\,\mathrm{M}_{\odot}\mathrm{<}M\mathrm{<}10^{14}\,\mathrm{M}_{\odot}$
- 2. **OUT**, otherwise.

ML predictions: adding the shear shows little improvement

Machine learning vs analytic frameworks

For more information see

arXiv:1802.04271