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Understanding galaxy overdensity and shape clustering

LSS using PT Introduction



Galaxies and biasing of dark matter halos

Galaxies form at high density peaks of
initial matter density:
- rare peaks exhibit higher clustering!
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» Tracer detriments the amplitude:
Po(k) = b*Py (k) +
» Understanding bias is crucial for

understanding the galaxy
clustering

Power spectrum P(k) [(h~!Mpc)3]

k [h Mpe]
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Earlier approaches to halo biasing

Local biasing model: halo field is a function of just DM density field
On = ¢50 + cs2 ((52 — <(52>) +oess00 + ...
Quasi-local (in space) relation of the halo density field to the dark matter
Sn(X) = cs0(X) + c5262(x) + c530°(x)
+ c252(X) 4 c520(X)s%(X) + cptp(x) + cus(X)1(X) + cg53(x)
+ce+ ...,

with effective ("Wilson’) coefficients ¢; and variables:
1 1
SU(X) = 8,8J¢(X) — gdfé(X), tU(X) = 8,'\/]‘ — —6K9(X) — S,'J'(X),

3%
2 0, 4 2
p(x) = [0(x) = 6(x)] = =s(x)" + 576(x)%,
where ¢ is the gravitational potential, and white noise (stochasticity) e.

More complex structure (more physical effects) :
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Effective field theory of biasing

Non-local (time) and quasi-local (spece) relation of the halo density field to the dark
matter

t
on(x, 1) =~ / di H(t') [es(t,f) : 6(xp, 1) :
+ep(t, ) 6(xn, )% e (t,f) @ 53 (xp, ) :
+ ¢s3(t, t/) : 5(Xﬂ, l‘,)3 T H-Cjs2 (t, l‘/) 2 0(xq, ll)SQ(Xﬂ, tl) [ S
+ee(t,0) e(xp, ') + ces(t, 1) = €(xp, )0(xp, ') : + ...

82
+eozs(t, t/) XQH 0 (xq, t/) +... :|
kM

Novice consideration of non-local in time formation, which depends on fields
evaluated on past history on past path:

.
xp(x, 7, 7)) =x— / dr" v(r" xa(x,7,7"))

Alternative - all effects chaptered in Lagrangian approach.
Note: Assembly bias effects captured in the scheme.
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Effective field theory of biasing

Alternatively we can be similarly expand density of tracers as

x) = chOt(x)
0

where we list operators Oy:
1) e[,
@ )], ()’

) wel)’) ) e[, ()’ e,
where H[l]( k) = %5,,, (k), with derivative operators

RAVAr [,

— series allows one to estimate the higher order (theory) errors
— coefficients - physics from the R, scale - degeneracies
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Effective field theory of biasing

Expansion of the field of galaxy shapes:
xX) =) b,05(x)
0

where the list of operators (up to higher derivatives and stochastic contributions) is
R[],
2
TR[I], TR{M)7],, T ] e rtt],
(3)  TF[UP] TFIMOE] o TE[IE] e[,
[

TF (H[l]) ]lj’ TF[(H[I])Q]UH‘[H[”]’ TF[H[11]ij(tr[H[l]])2,..

ij’

Derivative operators relevant for leading power spectrum corrections

R*V2TF (1M .
ij
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Projections onto the sky

Master observable correlators
Psp (k) = (I (k)T (),

ijlm ij

By, (key, ko, kes) = (IL™ (hey )T P (Ko )TIC (ks )’

ijlmrs

Isotropy and homogeneity makes the expansion in spherical tensors useful

Hij(k) 3 (0) + Z H(m) )Yl(jm)

m=—2

different spectra are obtained by applying/subtracting the trace
<5t,a(k)5t,b (k’)>' _ PSIS(O)( )
(A RgyK)) = VPO (h
(gi(k)gh, (K)) = ¥ ¥y PO (k) + 2 Z YOV 9P (1)

g=1
bispectrum

(85 ()&l o) 5 (s )) = V) (k) V2 (i) By ) ey g, ) +
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Projections onto the sky

3D shape of galaxies get projected onto the onto the sky:
1
Y,i(r,z) = (Pik(fl)'/’jl(fl) - 5731'/'(?!)7’1{1(?1)) en(r,z),
Using the helicity basis (7, m,., m_) intrinsic shape is:

i (r,2) = 142 (r MG 4y o (r )M

{E,P}?,Z; = u{&, P},
{&, Py s = M<i2 VPt ()ig{€, P},
Qr12
{6, PYLa 4o = MG ()M (3) r £2
X ’Pijmn (n)Pker( )gg{§ P}mnr57

z1 z9

lgl =0, $(1—p?)et??,
MED PV () = lal =1, % 355 (senla) F w)v/1 — u2e*29,
lal =2, 5(sen(q) F p?)e®
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Effective field theory of biasing

Perturbative form of the shear tensor field is given in the form

(k) = > (2m)*5 g, K s (@1 - 42)82(41) - 32(40).
n=1
where kernels ICZ%iaS up to the third order are needed for one loop spectrum.

We now apply the decomposition to the PT results up to one-loop power
spectum

PaboneIoop (o) — Pt () - P40 32 () - P (k) + P Y (i),

Linear, and loop (22), (13) contributions

in klkkkm a
PN () = SR D) P (k)

ijlm k4 T1l1] cr[ll
b,

P (k) = 2 K2 g,k — q)K50, (4, k — q)Prin (¢) Prin (K — g),
b,(13 kik; 3

Pyt (k) = 3eiihy 25 Puin(k) K3, (k. 4, —4) Prin (q).
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Effective field theory of biasing

New physical scale ky ~ 27 (%ﬂ £0)"", which can be different then k..
Interesting case ky; > ks !

We look at the correlations at & < k.
Each order in perturbation theory we get new bias coefficients:

Oy (k,t) = /55,1 [Dté(l)(k) + flow terms} + /6572 {D?é(z)(k) + flow terms} +...
t t
= cs.1 [5<1>(k) + flow terms} +eso [5@) (k) + flow temls} .

Emergence of degeneracy: choice of most convenient basis

Renormalization! (takes care of short distance effects at long distances)
In practice, ¢s 1 is a bare parameter, the sum of a finite part and a counterterm:

55,1 = 55,1, finite + Z'6,1, counter

After renormalization we end up with 7(12) finite bias parameters b;.
Observables: Py, Pyg, Byit, Bitg, Bigg, Bege

LSS using PT Effective field theory of biasing



Effective field theory of biasing

Consistency with N-body simulations achieved up to the £ < 0.3Mpc/A for
the Power Spectra, similar for the Bispectrum & < 0.15Mpc/A

NLIT: Kpin=0.04, lkppy=0.15
hm |[hh |hmm|hhm|hhh| chiZ P
1.06 + |+ | = =1="1o0.0804]| 1.000
1.04 halo-halo spectrum: bin_1 (bs=1.33) z=0.0 + ¥ + — — 0.719 |0.9963
E‘;EL + |+ [ =]+ | —10.645 [0.9998
~ 1. + |+ | == |+ |0.747 |0.9915
g8 0. + [+ [+ [+ | —]o0.835 [0.9746
N 0.96 + [+ [+ [ =+ | 1.08 |0.1685
0.94 + |+ | = |+ |+ |0.990 [0.5345
0.0 0.1 0.2 0.3 0.4 0.5 F I F ¥+ F 1 1.08 [o.1335
k[h/Mpc]

1.4F < '

0n =~ .

<5 1.2f 2=0.0, <12=0%5071, k;=1.5k;, bin=0

S0 . S

)

~ 1.0 Most of the constraint comes

< L .

£0.8 form the 3-pt function

M 0.6k ‘ ‘ ‘ ]

0.0 0.1 0.2 0.3 0.4
Max[kllk21k3J

If we had the simulations for the 4-pt function 2-pt function would be fully predicted.
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Bias in Lagrangian space in redshift space

DM halo multipoles multipoles in configurations space

OO 0f=0,125 < IgM < 13.0 OO0 =2 125 <IgM < 13.0
OO0 0£=0,130<IgM< 135 0[] £=2, 13.0<lgM < 13,5

N-body/Theory

LSS using PT Effective field theory of bia



Adding baryonic effects

- baryons at large distances described as additional fluid component (short distance
physics is encoded in an effective stress tensor)

Pp(xq, )

Ho)? + s, (1,4") wp Sy (x115)

Jh(x,t):/tdt' H(!) [Eaz¢(t,t')

B O Xq1,., ! B o (xs1 l‘/)
+ o (t,1) we M + Con! (t,7) wy Zh b T

H(t") H(')
’ 0,0; ,t/ 0o N
+Co,000:06(61) },d)((:f)ﬂz ) ,zsc)g &

+ Eﬁc (t7 tl) We Ec(xﬂw tl) + 66}7 (tz tl) Wh Eb(xﬂbv t/)

82¢(Xﬂ, t/)

D¢ (xn, 1)
H(t')2 o

+E€¢32¢(I7 t,) We Ec(xﬂcv t,) H(t’)2

+ T 024t 1) wy ep(xpip, 1)

where xy) is defined by Poisson equation and:

T T
xﬂb(x7 T, Tl) =X— / dr” vb(THvxfl (x7 T, T”)) ) xflc(x7 T, T,) =X— / dr” vC(T”7xfl(x7 T, T”))
T ]

- similar expressions valid when including neutrinos, clustering dark energy ...

LSS using PT Effective field theory of b:



Adding Non-Gaussianities

We assume that non-G. correlations are present only in the initial conditions
and effect can be described by the squeezed limit, k; < kg of correlation functions.

After horizon re-rentry, but still early enough to neglect all gravitational
non-linearities, the primordial density fluctuation are given by

6 (ks tin) = 8g(ks) + L. (ke, tin) O (ks — ki, tin)

Sk ) = 3H0 1 () , i i
where ¢(ki, tin) = 5 D(im) 2100 \ ks 0g(kr, tin) and where T(k) is the transfer function.
in) k2

In the presence of primordial non-Gaussianities, additional components:

- t - ~ 2 !
Bix.0) = ot 0., t) [ B (e %0) e 0 d) T

7 t o o= @2, o ~ 8 i OPolxn, 1)
13 daleain? [ ar 1) [oF 0ty re ) S 4]

Also studied in:

LSS using PT Non-Gaussianities



Nonlinear dynamics — including shell crossing

LSS using PT Non-Gaussianities



Lagrangian vs Eulerian framework

Eulerian: Lagrangian:

Coordlnate of a (t)racer particle at a given moment in time r

r(q,7) =q+¢(q,7),

is given in terms of Lagrangian displacement.
Continuity equation:

(14 80) dr=d'g vs. 1460) = [ 8 (r—a-v(a).
q

Fourier space

(2m)252(K) + 5 (k) = / % exp (ik - 1),

q

LSS using PT Non-Gaussianities



Clustering in 1D

1D case studied recently in:

1-d power spectrum

-06" ("4 T T / \ T
z=0.0 TEk; =1 i
04l T(k l+O(1]¢2 |
. T (k) =1+ (o +dok?) k?
T (k)= 1+/r1+$2k2-m3k4 K2
W02 /l —————————————————————
———————————————————————————— N Al e
.00 = N
.02 R R GRREEEE &
o T(k>Plloop
'04- "I"—T(k)PZloop
——— T(K) Ps 100
06l N ‘ \ (k) Ps 100p
0.02 0.05 0. 10 0. 20
k [h/Mpc]
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Clustering in 1D

1D case studied recently in:

nlo ., 7 -
N-body sims .~
Cosmic Emu e

[h/Mpc]
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Path integrals and going beyond shell crossing

- as we saw the Lagrangian framework includes shell crossing
- Lagrangian dynamics can be compactly written using

Lo+ Ao(9) =
where: 5
2 —1
d) = (wa U) ) [LO]izh = _775 ) AO(d)) = % (Oa 8x6x_26 =+ ¢) .
2 87’]2 + 2
Statistics of interest given by generating function
N-letiold o
Z() = [ dee 2N €Nl and (¢, ¢ :fz.’ )
0=/ (Gun) = 520,

which after the variable change becomes

Z(j) = /d¢ e S@)tie.

with S(¢) = 1/2 [Lod + Ao(¢)] N1 [Lod + Ag(9)] .

LSS using PT Non-Gaussianities



Path integrals and going beyond shell crossing

We can organize our perturbation theory as:
S =S, +S,, where then wedo exp(—S) = exp(—S,)(1 =S, +5,/2+ ...)
where we can choose what the Gaussian part” will be, i.e.

Sg = 1/2xNx + ix[W 'Lol¢ = 1/2xNx + ixLo

and
S, = ixAo(¢) +ix[(1 — W H)Lole = ixA(9),

where Y is the auxiliary field from the Hubbard-Stratonovich transformation.
Perturbation theory result : Z(j) = Zo(j) + Z1(j) + . . .
Leading order result: truncate Zel’dovich dynamics!!!

Zo = e¥CT and P(k) = / g e Sl

higher orders more complicated, build in renormalization!

LSS using PT Non-Gaussianities



Path integrals and going beyond shell crossing
W =exp(—ck®), n=0.5

1.0 T O s s
0.8 0.8 o
3°0.6 3°0.6
~ ~
2 Q -+ pure linear ~
& 0.4 ---- pure linear 3 & 0.4} — 1-loop, c=0.74
— 1-loop, c=0.74 seer Zel, c=0.74
- W2(c=0.74) ~—— 1-loop, c=0.1
0.2r 1-loop, c=0.1 0.2 . Ze cZ01
W= —= N-hod
0.0 w (T 0.1) | 0.0 0 1y |
: 107! 10° : 10~ 10°
k [kyi] k [knc]

Significance and connection EFT formalism:

>

>

v

v

no need of EFT free parameters, i.e. counter terms are predicted
CMB lensing: direct information on baryonic and neutrinos physics
reduction of degeneracy in galaxy bias coefficients

possible connection to the EFT formalism by matching the £ — 0 limit

Non-Gaussianities



&

~.= Key points:

» Shell crossing can be consistently added to the perturbative Lagrangian
scheme.

» EFT framework is viable for study clustering of shapes as well as
overdensities of galaxies.

» It offers most simplifications on largest scales & Lagrangian setting is a
natural for the study of BAO effects in LSS statistics..

LSS using PT Non-Gaussianities



Wiggles for halos in redshift rpace

P(k) = /qe*"q'k(l — bias) exp (—%As(kv ‘I))

A1=A2=0

+ h.o. + “‘stochastic”,

2
where we e.g. 4*(k,q) = <()\16L(q1) + X2br(gq2) + k- As(q)) > , gives
c

5P(k, v) = e~ (142HNr?) =2 (gmax) (b% + 212 + L 4 by (b1 +f2)

where gmax implicitly given by 8% [(1 —icg(Oxn, + Ony) — 631%\1 (’9)\2))6,43 (k, q)} N

K2
2

)6PL(k, 7) 4 h.o.
ki

1=X2=0

4=4max
. . 4 .
depends on k, v as well as bias parameters c;, cg2y, . . . simplest 52 = # (1 —jo(gk))PL(p).
0.10 0.10
—  SBRS y?/dof=1.167
- EFTO x?/dof=1.066
£ 005 2 0.05
<§\ <&
H H
a5 0.00 a5 0.00
|
' e
& / "
= _ 3 pre-rec & -
0.05 1 2=0.6 —0.05 ?:).?c
0.0<p<0.1 0.9<p<1.0
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 015 0.20 0.25 0.30
k [h/Mpc] k[h/Mpc|
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Wiggles for halos in redshift rpace

. 10— . . .
Results and parameters estimate: pre.rec EFTL
=
<
&
=
I3
Pre-reconstruction Al
EFT0 model Free: 0.1, ), f, b1, by
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