

Pauline Zarrouk* Irfu/DPhP, CEA, Université Paris Saclay PhD advisor: Etienne Burtin

*pauline.zarrouk@cea.fr

Towards precision cosmology with quasar anisotropic clustering

SCLSS – Oxford – April 20th 2018

eBOSS quasars : DR14 analysis and forecasts for DR16

3 standard RSD clustering analysis using the eBOSS DR14 quasar sample

Gil-Marin et al. 2018, MNRAS, doi:10.1093/mnras/sty453 Hou et al. 2018 (submitted to MNRAS)

Zarrouk et al. 2018, MNRAS, doi:10.1093/mnras/sty506

→ 18% on $f\sigma_8$ 7.5% on H and 5.5% on D_A

→ Current DR14 analysis: $\Delta f \sigma_{8} \Delta \alpha_{par} \ge 0.03$

Pauline Zarrouk | PAGE 2

Study of potential systematics for DR14 quasars

Modelling systematics

- Bias models
- Redshift uncertainties

$$\Rightarrow \begin{array}{l} \Delta f\sigma_8 = 0.033 \\ \Delta \alpha_{par} = 0.038 \\ \Delta \alpha_{perp} = 0.006 \end{array}$$

Using the N-body OuterRim simulation (Habib et al. 2016)

Investigate the effect of redshift uncertainties

Redshift estimates in the DR14 quasar analysis

- 'z': pipeline redshift (template-based) after correction for catastrophic redshifts
- z_{MgII} ': redshift deduced from the fit of the location of the MgII peak
- 'z_{PCA'}: another template-based redshift using MgII line as the reference

\rightarrow Scatter between 'z_{MgII} - z' gives us an estimate of the redshift resolution

Pauline Zarrouk | PAGE 4

Investigate the effect of redshift uncertainties

 $c \cdot \Delta z/(1+z)$

 $| \, \mathrm{km} \, s^{-1} |$

- Gaussian distribution according to SRD
- 'z_{MgII} z' distribution rescaled so that the width matches the one of the SRD

→ Focus on the impact of exponential tails on cosmological measurements

→ DR14 analysis: Half of the modelling systematics came from redshift uncertainties

Zarrouk et al. 2018 [arXiv:1801.03062] Pauline Zarrouk | PAGE 5

Towards a more robust estimation of modelling systematics

→ Even with SRD Gaussian distribution for redshift uncertainties: $\Delta f \sigma_{8,} \Delta \alpha_{par,} \Delta \alpha_{perp} \ge 0.01$

> Does $\Delta f\sigma_{8,} \Delta \alpha_{par,} \Delta \alpha_{perp}$ ≥ 0.01 depend on the bias models? HOD with 3 different satellite fractions (0%, 13%, 25%) Bin in mass 12.5 ± 0.3 No mass selection, just a cut to have mocks with the same statistics

➤ Does $\Delta f\sigma_{8,} \Delta \alpha_{par,} \Delta \alpha_{perp} \ge 0.01$ depend on the simulation?
Simulation | Box length | # particles | mass resolution | halo finder
OuterRim | 3 Gpc/h | (10240)³ | 1.8 10⁹ M_{sun}/h | particles only
BigMDPL | 2.5 Gpc/h | (3840)³ | 2.4 10¹⁰ M_{sun}/h | Rockstar

➤ Does Δfo₈, Δα_{par}, Δα_{perp} ≥ 0.01 depend on the RSD model?
CLPT-GS (Zarrouk et al. 2018), TNS (similar to Gil-Marin et al. 2018), CLEFT-GS

Foy model to investigate numerical issues and test the fitting procedure

Towards a better understanding of eBOSS quasar redshift resolution

 \rightarrow Artificial scatter in z – z_{MgII} due to statistical uncertainty in MgII-redshift because of line detectability given the eBOSS S/N and redshift range

Takeaway

- Final eBOSS quasar sample (February 2019): need to divide our systematic budget by a factor ~3 not to be systematics-dominated
- Ongoing comparison in configuration space between different N-body simulations, RSD models and bias models
- Redshift uncertainties: for clustering analysis, one would like to use a homogeneous redshift estimate across the redshift range
- → Improve template-based redshifts (ongoing work)
 - By developing new spectral templates
 - By testing their performance in terms of catastrophic redshifts (<1%) and spectroscopic resolution (comparison with MgII-based redshifts when MgII-line well detected)
- eBOSS
 - By using repeated observations from the RM program to estimate the statistical uncertainty

→ DESI will observe 1.7M quasars between 0.9-2.1

Pauline Zarrouk | PAGE 8